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Abstract. The flow past a vehicle traveling at hypersonic speed through the atmosphere is energetic enough to
cause vibrational and electronic excitations of the gas particles, as well as trigger chemical reactions. Finite element
formulations based on a symmetric form of the conservation laws, such as Galerkin/least-squares, have been developed
over the years, and have proved to be successful over a wide range of Mach and Reynolds numbers. They were aimed at
solving the Euler and Navier-Stokes equations for perfect gases. Departures from the calorically perfect gas model are
considered in the present work, with particular emphasis on thermochemical equilibrium. Applications to reentry-type
flows are presented.

1. Introduction. In extending the Galerkin/least-squares finite element method to hyper-
sonic flows involving chemistry and high-temperature effects, the entropy variables approach may
have been expected to engender complications. In fact, not only was no fundamental impediment
encountered, but also what seemed to be a consequence of the perfect gas assumption, proves to be
quite general.

Although all the material presented subsequently pertains to what we call a general divariant
gas, this paper is aimed primarily at the description of equilibrium flows. Before outlining the con-
tents of the paper, we feel it useful to spend some time explaining what we mean by “equilibrium
flow” and “general divariant gas.” In the thermodynamic sense, equilibrium is defined as the com-
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bination of mechanical, thermal and chemical equilibria. Mechanical equilibrium is achieved when
there are no unbalanced forces within the considered system or between the system and its sur-
roundings. In the absence of body forces this leads to uniform velocity and pressure distributions.
Thermal equilibrium requires all parts of the system to have the same temperature equal to the
temperature of the surroundings. Of course not too many interesting flows have constant pressure,
temperature, and velocity. However, in many practical instances to the engineer, the assumption
of local equilibrium can be made. Under such an assumption, the system can be divided into a
collection of microsystems, small on the thermodynamic scale, but large enough to allow certain
equilibration processes to take place through particle collisions. Each microsystem is considered in
mechanical and thermal equilibrium internally, so that local values of pressure and temperature can
be defined. Note that a particular microsystem is not necessarily in equilibrium with the surrounding
ones. Molecular processes associated with rotation, vibration, and electronic excitation are assumed
to be in equilibrium at the translational temperature. This supposes that the corresponding time
scales are small compared to that pertinent to the flow field. Obviously this condition cannot be
satisfied in regions of the flow where large gradients exist, such as behind strong shock waves or in
the boundary layer. In addition, small departures from translational equilibrium, such as viscous
dissipation and thermal conduction, are taken into account by the Navier-Stokes terms. Hence, in
the absence of chemical reactions, the system can be described as a general divariant gas: given an
equation of state, its thermodynamic properties are completely defined by any pair of state variables,
say pressure and temperature. The equation of state is not limited to that of a thermally perfect
gas; in fact, one is not even restricted to the sole description of gases. If the system is chemically
reactive, the equilibrium flow assumption requires that the chemical reactions be instantaneous. In
other words, each microsystem has a uniform chemical composition which responds instantly to
any change in pressure or temperature. Neglecting the chemical kinetics also precludes account
of mass diffusion, another translational nonequilibrium phenomenon. However, it still permits the
description of the system as a general divariant gas.

An outline of the paper follows. In the next section, we derive the symmetric form of the
Euler and Navier-Stokes equations for a general divariant gas. In section 3, we describe briefly the
Galerkin/least-squares finite element formulation. In section 4, we propose a simple equilibrium
chemistry model for air. In section 5, before giving some concluding remarks, we present a few
numerical examples which confirm the practical computer implementation of the method.

2. Symmetric Euler and Navier-Stokes equations for a general divariant gas. As a
starting point, we consider the Euler and Navier-stokes equations written in conservative form:

(2.1) U, + Fpv = FAf

where U is the vector of conservative variables; F4 and FUf are, respectively, the advective and
the diffusive fluxes in the ith-direction. Inferior commas denote partial differentiation and repeated
indices indicate summation. In three dimensions, U, F2dv, and F'diff read

1
(2.2) U=ps u
etot
0
(2.3) Eadv =uU +p< & Ediff _ Evisc + Eheat
Uy
0 0
(24) EViSC — Tij(sj F‘iheat — 03
TijUj —q;

where p is the density; w = {u1, ug, us}? is the velocity vector; etot is the total energy per unit mass,
which is the sum of the internal energy per unit mass, e, and of the kinetic energy per unit mass,
|u|2/2; p is the thermodynamic pressure; and §; = {d;;} is a generalized Kronecker delta vector,
where §;; is the usual Kronecker delta (viz., d;; = 1, and §;; = 0 for ¢ # j). The diffusive flux, which
constitutes a first order correction taking into account translational nonequilibrium effects, splits
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up into two parts: a viscous stress part, FYs¢, and a heat conduction part, Fiheat. Furthermore,
T = [ ] is the viscous-stress tensor; ¢ = {q1,q2,¢3}7 is the heat-flux vector; and 03 is the null
vector of length three.
The definition of the diffusive flux is completed by the following constitutive relations:
i) The viscous stress tensor T is given by

(2.5) Tij = AViSCuy 15 + pVise(us j + uji)

where Avisc and pVvisc are the viscosity coefficients. Avis¢ may be defined in terms of pVisc and
the bulk viscosity coefficient p¥s¢ by

i . 2

26 )\v1sc = pVisc _ —visc,

(2.6) KB 3H
For perfect monatomic gases, kinetic theory predicts that p}¥is¢ = 0. Stokes’ hypothesis states
that pyisc can be taken equal to zero in the general case. However, as shown by Vincenti and
Kruger [17], behaviors such as small departures from rotational equilibrium can be represented
by means of bulk viscosity. In the present discussion, where thermal equilibrium is assumed,
Stokes’ hypothesis is valid.

it) The heat flux is given by the usual Fourier law,

(2.7) —

where k is the coefficient of thermal conductivity.
Equation (2.1) can be rewritten in so-called quasi-linear form:

(2.8) Ui+ AiU; = (KU ;)

where A; = I“‘iadUv is the i*h advective Jacobian matrix, and K = [Kj;] is the diffusivity matrix,

defined by Fidiﬁ = K;;U ;. The A;’s and K do not possess any particular property of symmetry or
positiveness.
We now introduce a new set of variables,

oM

T - "~
(2.9) VT = oo

where H is the generalized entropy function given by
(2.10) H=HU)=—ps

and s is the thermodynamic entropy per unit mass. Under the change of variables U — V| (2.8)
becomes:

(2.11) AgVi+ AV = (KijVy).i
where

(2.12) Ao=Uy

(2.13) A; = A A

(2.14) Ki; = K; A.

The Riemannian metric tensor Ay is symmetric positive-definite; the A;’s are symmetric; and K =
[K;;] is symmetric positive-semidefinite. In view of these properties, (2.11) is referred to as a
symmetric advective-diffusive system.
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For a general divariant gas, the vector of so-called (physical) entropy variables, V', reads

(0wl
(2.15) V== u
T _1

where p = e + pv — T's is the chemical potential per unit mass; v = 1/p is the specific volume. In
order to derive (2.15), we used Gibbs’ equation written for a divariant gas (s is a function of e and
v only):

1
(2.16) ds = T(de + pdv).

The Riemannian metric tensor jo and the advective Jacobian matrices fL require an additional
equation of state to complete their definitions. For that purpose, we will assume given a relation
which provides the chemical potential of the gas in terms of its thermodynamical state, e.g.,

(2.17)

p=ppT).

All thermodynamic quantities relevant to the formation of (2.11) can then be computed:

au ou
(2.18) 5= (—) = (_)
or/, ) r
(2.19) h=p+Ts e=h—-pv
1/ 0v 1/ 0% 1 (ov 1 /0%
2.2 =—|=] =- == N
(220) @y (8T)p v (8p8T) br v (8p)T v (8p2)T
_(on\ o2y _[0e\ azvT
@2 e= (8_T) =T (aT) e = (8_T) == 5

where «y, is the coefficient of volume expansion, Bt is the isothermal compressibility, and ¢, and
¢y are the specific heats at constant pressure and volume. As an example, the Riemannian metric
tensor Ag reads:

r |2 vapT
1 u u u h+ — — —
1 2 3 22 By
u T—-1
u? + ﬁ_T ULUL U1U3 ui(h + % — %)
~ T
(22) A= il s v T 1)
> Br 2 2 | 2|2 ( Br )
T—-1
symm. u2 + L us(h + ’LL_ _ L
Y 5 Br 3 2 Br )
L ass J
where
ul2\2 v
(2.23) ass = (h + %) + 5 (0T = 20y T~ Jul2(apT = 1)).

All other coefficient matrices can be found in [1].

Taking the dot product of (2.11) with the vector V' yields the Clausius-Duhem inequality, which
constitutes the basic nonlinear stability condition for the solutions of this (2.11). This fundamental
property is inherited by appropriately defined finite element methods, such as the one described in
the next section.

3. The Galerkin/least-squares formulation. The Galerkin/least-squares formulation in-
troduced by Hughes [6-8] and Johnson [10, 11], is a full space-time finite element technique employing
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the discontinuous Galerkin method in time (see [12]). The least-squares operator improves the sta-
bility of the method while retaining accuracy. A nonlinear discontinuity-capturing operator is added
in order to enhance the local behavior of the solution in the vicinity of sharp gradients.

We consider the time interval I = ]0,T[, which we subdivide into N intervals I, = |tn, tnt1],
n=0,...,N—1. Let

(3.1) Qn=0x1I,
and
(3.2) P,=Tx1,

where () is the spatial domain of interest, and I' is its boundary. In turn, the space-time “slab” @,
is tiled by (ne1)r elements Q%. Consequently, the Galerkin/least-squares variational problem can be
stated as

Within each Qn, n = 0,...,N — 1, find V* € S} (trial function space), such that for all
Wh € V] (weighting function space), the following equation holds:

(33) [ (- wh-uwn) - wh B v s wh R,V dQ

4 [ (Whit ) UVAE) - Wi U(VAE))) o
(1e1),

+;/

(net),,

S5 L Ay
e=1 n

i (ewn) - r(cvr)daQ

:/ Wh-(—FﬁdV(Vh)—i—Fidiff(Vh))m dP.
PTI

The first and last integrals represent the Galerkin formulation written in integrated-by-parts
form. The solution space consists of piecewise polynomials which are continuous in space, but are
discontinuous across time slabs. Continuity in time is weakly enforced by the second integral in
(3.3), which contributes to the jump condition between two contiguous slabs, with

(3.4) Zh(tE) = lim ZM(t, + ).

e—0E
The third integral constitutes the least-squares operator where L is defined as

~ 0 = 0 0 ,—~ 0

T is a symmetric matrix for which definitions can be found in [4] and [15]. The fourth integral
is the nonlinear discontinuity-capturing operator, which is designed to control oscillations about
discontinuities, without upsetting higher-order accuracy in smooth regions. ¢ is the contravariant
metric tensor defined by
[g7] = [€.i - €517

where € = £(x) is the inverse isoparametric element mapping, and v" is a scalar-valued homogeneous
function of the residual LV". The discontinuity capturing factor v* used in the present work is an
extension of that introduced by Hughes and Mallet [5], Mallet [13], and Shakib et al. [15].

A key ingredient to the formulation is its consistency: the exact solution of (2.1) satisfies the
variational formulation (3.3). This constitutes an essential property in order to attain higher-order
spatial convergence. In addition, it must be noted that the numerical method presented here does
not rely on the advective fluxes being homogeneous in the conservative variables, which is true only
for a thermally perfect gas (see [1]). More complex equations of state such as those needed for
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describing equilibrium chemistry, do not require any particular approximation to be introduced,
which is often the case with other techniques. One can say that the formulation is consistent with
the equation of state. For further details about the method, the reader is referred to the works
mentioned in this section.

4. A simple chemistry model for equilibrium air. In this section, we describe a chemistry
model for equilibrium air. Although it is simple, it encompasses all the ingredients necessary to
compute the composition of the gas mixture and the quantities (2.18)—(2.21). The state of the system
is given by the vector of entropy variables, from which the chemical potential of the mixture y and
its temperature T can be extracted trivially. On the other hand, a solver based on conservative
variables would typically have the density p and the internal energy e at its disposal to define
the thermodynamic state of the system. We find the entropy variables advantageous here, since
temperature is a more convenient variable than density, especially to express quantities such as
energies (internal energy, Gibbs’ free energy, etc.).

We consider air as a mixture of five thermally perfect gases: No, Oz, NO, N, and O. Given the
thermodynamic state of the system (u,T'), we propose to compute the equilibrium partial pressure
of each component, and the quantities (2.18)—(2.21). In order to solve for the five ps’s, we need five
independent equations.

First, we can write the chemical potential as a function of the ps’s and T

(4.1) Zys ,us Ps, ) =M

where ys and us are respectively the mass fraction and the chemical potential of species s, and
= {ps} is the vector of partial pressures. The mass fraction ys is related to the mole fraction
and the molar mass M, of species s, and to the molar mass M of the mixture by

(4.2) Ys = ——Ts.

In turn, x5 and M are given in terms of the partial pressures by

Ds
4.3 Ts = —
(4.3) )
and
(4.4) N =3 i,

The pressure is provided by Dalton’s law of partial pressures:
(4.5) p= Z Ds.

S
Each species being considered as a thermally perfect gas, we have

(46) DPs = psRsT

where ps and R are respectively the density and the specific gas constant of species s. R is linked
to the universal gas constant R = 8.31441 J/mol-K through

R

4.7 Rs = —.
(4.7) o

The chemical potential of species s is

(4.8) s = hs — T'sg
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where, in the thermally perfect gas case,

(4.9) he = es(T) + RT
des
(4.10) ss:/ ; + RyInT — Rylnps + s0s.

The internal energy e is a function of temperature only, and sgs is the specific reference entropy
upon which we will elaborate later. We adopt the rigid-rotator and harmonic-oscillator model.
Under this assumption, a simple closed form expression exists for the internal energy. It splits up
into a translational, a rotational, and a vibrational contribution, to which the heat of formation h9
must be added:

(4.11) es(T) = elrans 4 eot 4 eyib 4 Y

(4.12) elrans(T) = 3 x %RST
0, for atoms

(4.13) e (T) = { 2 % %RST, for diatomic molecules
0, for atoms

(4.14) ey (T) = Rs0Y"

for diatomic molecules.

exp(OYP/T) -1’

We ignore any electronic contribution to the internal energy. This makes the model simpler, but
does not limit the generality of the present development. Equation (4.10) can now be integrated
exactly, yielding

vib

(4.15) 5s= = —R,In [1—exp(—OY¥P/T)] + cps InT — Ry Inps + sos
where

5

ERS, for atoms
(416) Cps = Cus + Rs = 7

ERS’ for diatomic molecules.
Finally, us is given by
(4.17) ps = cpsT (1 —InT) + RsTInps + hY + RsT In [1 - exp(f@‘s’ib/T)] — T'sps.

We introduce the molar chemical potentials
(4.18)  f1s = Mapts = épsT(1 —InT) + RT Inps + hQ + RTIn [1 — exp(—O¥"®/T)] — T30,

= iQ(T) + RT Inp,

where /12 is the molar chemical potential of species s in the pure state and at unit pressure. Equation
(4.1) can be restated as

(4.19) 3 b (u - MSN) —0.

This constitutes the first equation of our system.
The second equation is obtained by stating that the local proportion of nitrogen atoms relative
to oxygen atoms is constant, viz.,

2xN, FaNno +an 79
220, + N0 + ZO 21

(4.20)
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where we have assumed that air is a mixture of 79% of nitrogen and 21% of oxygen by volume. In
terms of partial pressures, (4.20) can be rewritten as

2
(4.21) PN, +PNO + PN _ 9

2po, + pno +po 217

In addition to (4.19) and (4.21), we need three more equations. These are provided by three
independent chemical reactions,

(4.22) Ny = 2N
(4.23) 0 = 20
(4.24) NO = N + 0.

We can write the law of mass action for each of these. For consistency, we do not state the equilibrium
condition for reaction R in the usual form, i.e.,

(4.25) [1p¢" = Kpr(T)

where vsg is the stoichiometric coefficient of species s in reaction R, and K,r(T) the equilibrium
constant of reaction R. The latter is a function of temperature which is often given in the form
of a curve fit of experimental results. In place of (4.25), we write for each reaction the following
statement which is equivalent, but does not require any extraneous data:

(4.26) ZVsRﬂs —0.

Once a model has been chosen for the internal energies of the different species, the system is closed,
and the addition of any superfluous piece of information, such as equilibrium constants, can only
introduce inconsistencies. However, in order to use the chemical potentials given by (4.18) in the
equation for reaction equilibrium (4.26), the absolute entropy must be computed carefully, and in
particular the integration constant Sps. It is provided by statistical mechanics, and is the sum of
four terms:

(4.27) Sos = SHAS + S50+ S + 55
where
3/2

trans D 2mms 5
(428) S(t)s = R{ln ( % ) k5/2 + 5}
(4.29) grot = R(1 — Ino,O%t)
(4.30) gyib = 0
(4.31) 3¢l = R1n gos.

Equation (4.28) is known as the Sackur-Tetrode formula, in which m, is the mass of one particle of
species s:

(4.32) ms = ——;

N = 6.022045 x 1023 is Avogadro’s number; h = 6.626176 x 1034 J-s is Planck’s constant; and
Boltzmann’s constant k is given by

R
(4.3 <

In the rotational part §{2°, o, is the symmetry factor of the molecule, and ©%" is its characteristic
temperature for rotation. Although we have neglected any electronic excitation, we must take into
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account the degeneracy of the ground level, which yields zero energy, but is crucial for a correct
evaluation of the reference entropy. The constants used in the present model are gathered in the
table below. For the most part, they were taken from [2].

No 02 NO N o)

M, (kg/mol) | 28x10-3 | 32x10-3 | 30x10-3 | 14x10-3 | 16 x 103
h9 (J/mol) 0 0 89,775 470,820 246,790
eY* (K) 3,393.50 2,273.56 2,738.87 0.00 0.00
ort (K) 2.87 2.08 2.45 0.00 0.00
s 2 2 1 0 0
gos 1 3 4 4 9

Finally, for the three independent chemical reactions (4.22)—(4.24), equation (4.33) reads

(4.34) fin, = 2fiN
(4.35) f10, = 210
(4.36) ANO = fiN + flo-

The resulting system of five nonlinear equations for the py’s in terms of x and T ((4.19), (4.21),
(4.34)—(4.36)) can formally be expressed as

(4.37) f(,n,T)=0
where
Zs ps(fis — MSN)
42pN, — 158po, — 58pno + 21pn — 79po
(4.38) f= 2fN — AN,
2f10 — fio,

AN + fto — fino

The system (4.37) is solved using the Newton-Raphson method: given an initial guess p(®) for p,
the (n + 1)st iterate is defined by

(4.39) p(nt+l) = p(n) 4 Ap(n)
where
(4.40) Ap(™) = —J=1 (p), u, T) f (p™, u, T)
and
(4.41) J= (‘3_f> _
P/.r

A good initial guess assures quadratic convergence of the process. Typically, the ps’s are computed
up to ten significant digits in two iterations. Initial values for the partial pressures are obtained
from a table look-up.

Once convergence of the Newton scheme has been achieved, the Jacobian J satisfies

of of

142 Jd +(_) J +(_) iT =0
(4.42) P+ \ 9. pyTu or)
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which is the differential of (4.37). Thus,

(), - (3)
4.4 dp=—-J- 1| = duy — J-1 [ = dT
(4.43) p ( ) o),
and

@) g (a_f>
(4.44) ( o). ) s

op oFf
(4.45) (_) _ g (_) .

oT u oT Py

These derivatives are obtained at essentially no extra cost, since in practice we use the LU-decom-
position of the last iteration Jacobian. From (4.44) and (4.45), we can calculate any thermodynamic
derivative. For instance, the partial derivatives of the mass fractions with respect to pressure and
temperature are given by

" () = [2(2) ()]
wen (3) |5 (3%) -z (%)

where

(8 (%), - 5 ()

> (2
(4.49) (Zp;)p@?)uiéélg”(%f)a

o

We now have everything at our disposal to compute the quantities required to form (2.11). For
instance, we have

_[(0h\ Ohs Oys
G () (), 2 ()
_1/ovy 1 1 0ys
(4-51) O‘p_é(a_T)p_T+stj(aT)pRs
1 (v 11 8%)
4.52 — () —Z2_ = R,
(452 or v<5p>T p RZ <6p T
2
(4.53) cv:cp—M
Br
2 Y
(4.54) a coBr

where a is the speed of sound.

The techniques portrayed in this section may seem elaborate for a simple chemistry model. In
fact, all the ingredients necessary for dealing with the most complex situation are contained within
the previous description.
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5. Numerical examples. We now present two sets of two-dimensional computations which
illustrate the procedures described in the preceding sections. The first one contrasts the perfect gas
and the equilibrium chemistry solutions for the same inviscid case; the second one compares viscous
and inviscid treatments of the flow past a space-shuttle like configuration.

The spatial domains are meshed using unstructured combinations of bilinear quadrilaterals
and linear triangles. Adaptive refinement is introduced in both the shock and the boundary layer
regions; we will elaborate on this strategy when we describe the individual test cases and especially
the Navier-Stokes one.

Convergence to steady state is achieved with the help of a first-order-in-time low-storage fully
implicit iterative solver based on the preconditioned GMRES algorithm (see [9, 14, 15]).

5.1. Flow over a blunt body. The geometry is a simple circular cylinder of unit radius extended
with two planes at 15° angle. The body faces an inviscid Mach 17.9 flow at zero angle of attack.
The free stream density and temperature are respectively 10-4 kg/m3 and 231 K. This test case
is described by Desideri et al. in [3]. Figure 1 compares the equilibrium chemistry solution (top)
with the perfect gas one (bottom) for the same inflow conditions. In view of the symmetry of the
problem, the computation is performed on half the domain only. The “chemistry” mesh contains
4,378 nodes and 8,573 elements; the “perfect gas” one 4,856 nodes and 9,527 elements. Both meshes
consist of triangular elements, and are adaptively enriched in order to better capture the detached
bow shock. Figure 1 presents both meshes (a), pressure (b) and temperature (c¢) contours. The
difference between the two equations of state appears quite clearly: the stand-off distance of the
shock is much reduced in the more realistic equilibrium chemistry case. In addition, the temperature
rise through the shock goes down by a factor of almost 3. The numerical results are found in
remarkable agreement with the theoretical solutions. Typically, the relative error on all stagnation
values is under 0.5%, with minima still an order of magnitude below this value (e.g., the stagnation
temperature in the equilibrium case is overestimated by a mere 0.0582%). In an industrial setting,
the additional cost due to the chemistry routine might be a real concern. In fact, it turns out that
the cost of an equilibrium chemistry computation is only about 20% higher than that of a perfect
gas computation. Specially designed curve fits may further reduce this figure.

5.2. Flow over a double ellipse. With this example, we compare the Euler and the Navier-Stokes
solutions of the same flow over a generic space-shuttle geometry given by a double ellipse. The inflow
Mach number is 25; the angle of attack is 30°. The free stream conditions simulate a 75 km altitude
in the U.S. Standard Atmosphere [16]: T = 205.3 K and po, = 2.52 Pa. For the viscous case, the
Reynolds number is 22,000 per meter; the geometry measures 0.76 m in length, with the major half
axis of the larger ellipse being 0.6 m long; the wall temperature is fixed at 1500 K. These test cases
are two-dimensional variants of cases proposed at the Workshop on Hypersonic Flows for Reentry
Problems — Part II, held in Antibes, France, April 15-19, 1991.

The meshes employed are shown in Figures 2 and 3. The Euler mesh consists of 8,307 nodes and
16,231 triangular elements. The Navier-Stokes mesh which contains 10,613 nodes, is an unstructured
combination of 13,605 triangles in the main flow and of 3,620 quadrilaterals along the body. The
structured strip is made of 20 layers of quadrilateral elements; its thickness is adapted to match
that of the boundary layer. This strategy, while maintaining the advantages of unstructuredness,
facilitates capturing the fine features of the boundary layer. In addition, both meshes are enriched
in the shock region. Figures 4-11 present the pressure, temperature, N and O mass fraction contours
for the inviscid (left) and the viscous (right) cases. As one would expect, the pressure contours are
quite similar for the two solutions. The Navier-Stokes solution shows however a clear recombination
of nitrogen and oxygen at the wall. The canopy shock present in the Euler solution has nearly
completely vanished in the viscous calculation. Finally, one must note the extreme thinness of the
boundary layer on the windward side of the body.
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b) Pressure contours; ¢) Temperature contours.
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Figure 2. Mesh: 8,307 nodes, 16,231 ele-
ments (inviscid case).
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Figure 3. Mesh: 10,613 nodes, 17,225 ele-

ments (viscous case).
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Figure 5. Pressure contours (viscous case).

Figure 6. Temperature contours (inviscid Figure 7. Temperature contours (viscous
case). case).
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Figure 8. Atomic nitrogen mass fraction  Figure 9. Atomic nitrogen mass fraction
contours (inviscid case). contours (viscous case).

Figure 10. Atomic oxygen mass fraction  Figure 11. Atomic oxygen mass fraction
contours (inviscid case). contours (viscous case).

6. Conclusion. Consistency has been the leitmotiv of this work, and was indeed one of the
main concerns in designing the method. First, the Galerkin/least-squares finite element method is
consistent in that it is a residual method: the solution of the initial problem is a solution of the
actual numerical problem. Then, the discretization of the problem is performed consistently, in the
sense that no alteration to the physical model nor any additional approximation are required by
the numerical method. Finally, the equilibrium chemistry model is consistent, since it uses only
the minimum number of theoretical and experimental constants, and thus eliminates any dangerous
redundancy. These ingredients result in a mathematically sound flow solver. Clearly, Numerical
results, such as those presented herein, strongly benefit from this firm mathematical basis without

compromising with performance.
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