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Abstract

The flow past a vehicle traveling at hypersonic speed through the atmosphere is en-

ergetic enough to cause vibrational and electronic excitations of the gas particles, as well

as trigger chemical reactions. Finite element formulations based on a symmetric form of

the conservation laws, such as Galerkin/least-squares, have been developed over the years,

and have proved to be successful over a wide range of Mach and Reynolds numbers. They

were aimed at solving the Euler and Navier-Stokes equations for perfect gases. Departures

from the calorically perfect gas model are considered in the present work, with particular

emphasis on thermochemical equilibrium. Applications to reentry-type flows are presented.
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I . Introduction

In extending the Galerkin/least-squares finite element method to hypersonic flows in-

volving chemistry and high-temperature effects, the entropy variables approach may have

been expected to engender complications. In fact, not only was no fundamental impedi-

ment encountered, but also what seemed to be a consequence of the perfect gas assumption,

proves to be quite general.

Although all the material presented subsequently pertains to what we call a general

divariant gas, this paper is aimed primarily at the description of equilibrium flows. Before

outlining the contents of the paper, we feel it useful to spend some time explaining what

we mean by “equilibrium flow” and “general divariant gas.” In the thermodynamic sense,

equilibrium is defined as the combination of mechanical, thermal and chemical equilibria.

Mechanical equilibrium is achieved when there are no unbalanced forces within the con-

sidered system or between the system and its surroundings. In the absence of body forces

this leads to uniform velocity and pressure distributions. Thermal equilibrium requires all

parts of the system to have the same temperature equal to the temperature of the sur-

roundings. Of course not too many interesting flows have constant pressure, temperature,

and velocity. However, in many practical instances to the engineer, the assumption of local

equilibrium can be made. Under such an assumption, the system can be divided into a

collection of microsystems, small on the thermodynamic scale, but large enough to allow

certain equilibration processes to take place through particle collisions. Each microsystem

is considered in mechanical and thermal equilibrium internally, so that local values of pres-

sure and temperature can be defined. Note that a particular microsystem is not necessarily

in equilibrium with the surrounding ones. Molecular processes associated with rotation,

vibration, and electronic excitation are assumed to be in equilibrium at the translational

temperature. This supposes that the corresponding time scales are small compared to that

pertinent to the flow field. Obviously this condition cannot be satisfied in regions of the

flow where large gradients exist, such as behind strong shock waves or in the boundary
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layer. In addition, small departures from translational equilibrium, such as viscous dissi-

pation and thermal conduction, are taken into account by the Navier-Stokes terms. Hence,

in the absence of chemical reactions, the system can be described as a general divariant

gas: given an equation of state, its thermodynamic properties are completely defined by

any pair of state variables, say pressure and temperature. The equation of state is not

limited to that of a thermally perfect gas; in fact, one is not even restricted to the sole

description of gases. If the system is chemically reactive, the equilibrium flow assumption

requires that the chemical reactions be instantaneous. In other words, each microsystem

has a uniform chemical composition which responds instantly to any change in pressure or

temperature. Neglecting the chemical kinetics also precludes account of mass diffusion, an-

other translational nonequilibrium phenomenon. However, it still permits the description

of the system as a general divariant gas.

A reader unfamiliar with hypersonic flows might wonder why an aerodynamicist would

be interested in reacting flows, outside the context of internal flows and combustion. The

stagnation temperature in adiabatic flow of a calorifically perfect gas is given by the formula

TPG
0 =

(
1 +

γ − 1

2
M2

∞

)
T∞, (1.1)

where M∞ and T∞ are, respectively, the free stream Mach number and temperature, and γ

is the ratio of specific heats, a constant equal to 1.4 for a calorifically perfect diatomic gas

such as air at room temperature. If the distinction between subsonic and supersonic is quite

easy, there does not exist such a thing as a “hypersonic wall,” marking a clear limit between

the supersonic and hypersonic regimes. A good indication might be provided by the

breakdown of (1.1) together with the perfect gas assumption, as we will see shortly. In the

tables below, we have gathered a few air and space crafts which are milestones in the history

of aeronautics and astronautics. Ordered according to increasing Mach numbers, we have:

the Wright brothers’ Kitty Hawk Flyer which opened the era of controlled powered flight

in 1903; the 747, the first so-called “wide-body” aircraft, introduced by Boeing in 1970;

the British/French supersonic transport, the Concorde, whose first experimental flight
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occurred in 1969; the SR-71 Blackbird, Lockheed’s high-altitude reconnaissance airplane

introduced in 1964; the rocket-powered North American X-15, which achieved in 1963

a Mach number of 6.7 at an altitude of 108 km, remaining the second fastest airplane

ever built, behind the Space Shuttle; the X-30, a still hypothetic demonstrator for the

concept of a hypersonic transport such as the National Aerospace Plane (NASP); the Space

Shuttle, built by Rockwell, which became in 1981, after its maiden orbital flight, the first

fully reusable vehicle to return from space under aerodynamic control; the Aeroassisted

Orbital Transfer Vehicle (AOTV) and its model, the Aeroassist Flight Experiment (AFE),

two conceptual designs among others for vehicles that would transfer payloads between

earth orbits, depending solely on aerodynamic forces; and last but not least, the Apollo

spacecraft, with its historic Mach 36 moon return in 1969. More information about these

crafts and the history of flight, can be found in the introduction chapters of [1, 17], and in

[18]. The Wright brothers obviously encountered no high-temperature hypersonic effects

with their top speed of 55 km/h, but the other vehicles merit scrutiny. We have collected

in Table 1, the flight conditions and the stagnation temperature as given by (1.1) for each

of the crafts. The cruise altitudes and Mach numbers are purely illustrative and, although

realistic, are by no means guaranteed to represent the actual performances of the different

vehicles. The pressures and temperatures at the different altitudes were taken from the

1966 U.S. Standard Atmosphere [19].
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M∞ h (km) p∞ (Pa) T∞ (K) TPG
0 (K)

Kitty Hawk Flyer 0.046 0 101,325 288 288

Boeing 747 0.8 10 26,500 223 252

Concorde 2 20 5,529 217 391

SR-71 3 30 1,197 227 636

X-15 6.7 108 1.068 × 10−2 227 2,265

X-30 15 75 2.516 205 9,430

Space Shuttle, NASP 25 75 2.516 205 25,830

AOTV, AFE 30 75 2.516 205 37,105

Apollo 36 ∼ 100 3.54 × 10−2 203 52,821

Table 1. Hypersonic flight? What is it?

The rise of the temperature in the stagnation region is due to the transfer of the vehicle

kinetic energy into the gas particle internal energy (or more rigorously, enthalpy). As can

be seen from Table 2, as the Mach number increases, the kinetic energy overshadows quite

dramatically the internal energy.

M∞ TPG
0 (K) e∞ (kJ/kg) |u∞|2/2 (kJ/kg)

Kitty Hawk Flyer 0.046 288 207.6 0.1

Boeing 747 0.8 252 160.7 28.8

Concorde 2 391 156.4 175.2

SR-71 3 636 163.6 412.2

X-15 6.7 2,265 163.6 2,056.2

X-30 15 9,430 147.8 9,307.9

Space Shuttle, NASP 25 25,830 147.8 25,855.2

AOTV, AFE 30 37,105 147.8 37,231.5

Apollo 36 52,821 146.3 53,092.8

Table 2. Why does the flow get so hot?

In fact, temperatures do not get as high as predicted according to (1.1). The calorifically

perfect gas assumption considers only the translational and rotational modes of molecules
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to store energy. In the real world, molecules vibrate, have electronic clouds, and can take

part in chemical reactions. More accurate temperatures computed with the equilibrium

chemistry model described in section 4 are presented in Table 3, together with the relative

errors of the “perfect gas” temperatures.

M∞ TPG
0 (K) T equil

0 (K) error (%)

Kitty Hawk Flyer 0.046 288 288 0.0

Boeing 747 0.8 252 252 0.0

Concorde 2 391 390 0.3

SR-71 3 636 628 1.3

X-15 6.7 2,265 1,818 24.6

X-30 15 9,430 4,210 124.0

Space Shuttle, NASP 25 25,830 5,812 463.1

AOTV, AFE 30 37,105 6,850 441.7

Apollo 36 52,821 ∼ 11,000 380.2

Table 3. In fact, it does not get that hot!

From Table 3, it appears clear that major departures from the perfect gas model occur only

above Mach 5, which is the value generally agreeed upon for the limit of hypersonic flight

in air. Atmospheres with different gas composition, pressure and temperature distribution,

could see this value either increase of decrease.

An outline of the paper follows. In the next section, we derive the symmetric form

of the Euler and Navier-Stokes equations for a general divariant gas. In section 3, we

describe briefly the Galerkin/least-squares finite element formulation. In section 4, we

propose a simple equilibrium chemistry model for air. In section 5, before giving some

concluding remarks, we present a few numerical examples which confirm the practical

computer implementation of the method.

II . Symmetric Euler and Navier-Stokes equations for a general divariant gas

As a starting point, we consider the Euler and Navier-stokes equations written in
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conservative form:

U,t + F adv
i,i = F diff

i,i (2.1)

where U is the vector of conservative variables; F adv
i and F diff

i are, respectively, the

advective and the diffusive fluxes in the ith-direction. Inferior commas denote partial

differentiation and repeated indices indicate summation. In three dimensions, U , F adv
i ,

and F diff
i read

U = ρ





1

u

etot





(2.2)

F adv
i = uiU + p





0

δi

ui





F diff
i = F visc

i + F heat
i (2.3)

F visc
i =





0

τijδj

τijuj





F heat
i =





0

03

−qi





(2.4)

where ρ is the density; u = {u1, u2, u3}
T is the velocity vector; etot is the total energy per

unit mass, which is the sum of the internal energy per unit mass, e, and of the kinetic energy

per unit mass, |u|2/2; p is the thermodynamic pressure; and δi = {δij} is a generalized

Kronecker delta vector, where δij is the usual Kronecker delta (viz., δii = 1, and δij = 0

for i 6= j). The diffusive flux, which constitutes a first order correction taking into account

translational nonequilibrium effects, splits up into two parts: a viscous stress part, F visc
i ,

and a heat conduction part, F heat
i . Furthermore, τ = [τij] is the viscous-stress tensor;

q = {q1, q2, q3}
T is the heat-flux vector; and 03 is the null vector of length three.

The definition of the diffusive flux is completed by the following constitutive relations:

i) The viscous stress tensor τ is given by

τij = λviscuk,kδij + µvisc(ui,j + uj,i) (2.5)
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where λvisc and µvisc are the viscosity coefficients. λvisc may be defined in terms of

µvisc and the bulk viscosity coefficient µvisc
B by

λvisc = µvisc
B −

2

3
µvisc. (2.6)

For perfect monatomic gases, kinetic theory predicts that µvisc
B = 0. Stokes’ hypothesis

states that µvisc
B can be taken equal to zero in the general case. However, as shown by

Vincenti and Kruger [20], behaviors such as small departures from rotational equilib-

rium can be represented by means of bulk viscosity. In the present discussion, where

thermal equilibrium is assumed, Stokes’ hypothesis is valid.

ii) The heat flux is given by the usual Fourier law,

qi = −κT,i (2.7)

where κ is the coefficient of thermal conductivity.

Equation (2.1) can be rewritten in so-called quasi-linear form:

U,t + AiU,i = (KijU,j),i (2.8)

where Ai = F adv
i,U is the ith advective Jacobian matrix, and K = [Kij] is the diffusivity

matrix, defined by F diff
i = KijU,j. The Ai’s and K do not possess any particular property

of symmetry or positiveness.

We now introduce a new set of variables,

V T =
∂H

∂U
(2.9)

where H is the generalized entropy function given by

H = H(U) = −ρs (2.10)

and s is the thermodynamic entropy per unit mass. Under the change of variables U 7→ V ,

(2.8) becomes:

Ã0V,t + ÃiV,i = (K̃ijV,j),i (2.11)
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where

Ã0 = U,V (2.12)

Ãi = AiÃ0 (2.13)

K̃ij = KijÃ0. (2.14)

The Riemannian metric tensor Ã0 is symmetric positive-definite; the Ãi’s are symmetric;

and K̃ = [K̃ij] is symmetric positive-semidefinite. In view of these properties, (2.11) is

referred to as a symmetric advective-diffusive system.

For a general divariant gas, the vector of so-called (physical) entropy variables, V ,

reads

V =
1

T





µ − |u|2/2

u

−1





(2.15)

where µ = e + pv − Ts is the chemical potential per unit mass; v = 1/ρ is the specific

volume. In order to derive (2.15), we used Gibbs’ equation written for a divariant gas (s

is a function of e and v only):

ds =
1

T
(de + pdv). (2.16)

The Riemannian metric tensor Ã0 and the advective Jacobian matrices Ãi require

an additional equation of state to complete their definitions. For that purpose, we will

assume given a relation which provides the chemical potential of the gas in terms of its

thermodynamical state, e.g.,

µ = µ(p, T ). (2.17)

All thermodynamic quantities relevant to the formation of (2.11) can then be computed:

s = −

(
∂µ

∂T

)

p

v =

(
∂µ

∂p

)

T

(2.18)

h = µ + Ts e = h − pv (2.19)

αp =
1

v

(
∂v

∂T

)

p

=
1

v

(
∂2µ

∂p∂T

)
βT = −

1

v

(
∂v

∂p

)

T

= −
1

v

(
∂2µ

∂p2

)

T

(2.20)

cp =

(
∂h

∂T

)

p

= −T

(
∂2µ

∂T 2

)

p

cv =

(
∂e

∂T

)

v

= cp −
α2

pvT

βT
(2.21)
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where αp is the coefficient of volume expansion, βT is the isothermal compressibility, and

cp and cv are the specific heats at constant pressure and volume. As an example, the

Riemannian metric tensor Ã0 reads:

Ã0 =
βT T

v2




1 u1 u2 u3 h +
|u|2

2
−

vαpT

βT

u2
1 +

v

βT
u1u2 u1u3 u1(h +

|u|2

2
−

v(αpT − 1)

βT
)

u2
2 +

v

βT
u2u3 u2(h +

|u|2

2
−

v(αpT − 1)

βT
)

symm. u2
3 +

v

βT
u3(h +

|u|2

2
−

v(αpT − 1)

βT
)

a55




(2.22)

where

a55 =
(
h +

|u|2

2

)2

+
v

βT

(
cpT − 2hαpT − |u|2(αpT − 1)

)
. (2.23)

All other coefficient matrices can be found in [2].

Taking the dot product of (2.11) with the vector V yields the Clausius-Duhem inequali-

ty, which constitutes the basic nonlinear stability condition for the solutions of (2.11). This

fundamental property is inherited by appropriately defined finite element methods, such

as the one described in the next section.

III . The Galerkin/least-squares formulation

The Galerkin/least-squares formulation introduced by Hughes [7–9] and Johnson [11,

12], is a full space-time finite element technique employing the discontinuous Galerkin

method in time (see [13]). The least-squares operator improves the stability of the method

while retaining accuracy. A nonlinear discontinuity-capturing operator is added in order

to enhance the local behavior of the solution in the vicinity of sharp gradients.

We consider the time interval I = ]0, T [, which we subdivide into N intervals In =

]tn, tn+1[, n = 0, . . . , N − 1. Let

Qn = Ω × In (3.1)

and
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Pn = Γ × In (3.2)

where Ω is the spatial domain of interest, and Γ is its boundary. In turn, the space-

time “slab” Qn is tiled by (nel)n elements Qe
n. Consequently, the Galerkin/least-squares

variational problem can be stated as

Within each Qn, n = 0, . . . , N − 1, find V h ∈ Sh
n (trial function space), such that

for all W h ∈ Vh
n (weighting function space), the following equation holds:

∫

Qn

(
− W h

,t · U(V h) − W h
,i · F

adv
i (V h) + W h

,i · K̃ijV
h

,j

)
dQ

+

∫

Ω

(
W h(t−n+1) · U

(
V h(t−n+1)

)
− W h(t+n ) · U

(
V h(t−n )

))
dΩ

+

(nel)n∑

e=1

∫

Qe
n

(
LW h

)
· τ

(
LV h

)
dQ

+

(nel)n∑

e=1

∫

Qe
n

νhgijW h
,i · Ã0V

h
,j dQ

=

∫

Pn

W h ·
(
− F adv

i (V h) + F diff
i (V h)

)
ni dP. (3.3)

The first and last integrals represent the Galerkin formulation written in integrated-by-

parts form. The solution space consists of piecewise polynomials which are continuous in

space, but are discontinuous across time slabs. Continuity in time is weakly enforced by the

second integral in (3.3), which contributes to the jump condition between two contiguous

slabs, with

Zh(t±n ) = lim
ǫ→0±

Zh(tn + ǫ). (3.4)

The third integral constitutes the least-squares operator where L is defined as

L = Ã0
∂

∂t
+ Ãi

∂

∂xi
−

∂

∂xi
(K̃ij

∂

∂xj
). (3.5)

τ is a symmetric matrix for which definitions can be found in [5] and [16]. The fourth

integral is the nonlinear discontinuity-capturing operator, which is designed to control os-

cillations about discontinuities, without upsetting higher-order accuracy in smooth regions.
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gij is the contravariant metric tensor defined by

[gij] = [ξ,i · ξ,j]
−1 (3.6)

where ξ = ξ(x) is the inverse isoparametric element mapping, and νh is a scalar-valued

homogeneous function of the residual LV h. The discontinuity capturing factor νh used in

the present work is an extension of that introduced by Hughes and Mallet [6], Mallet [14],

and Shakib et al. [16].

A key ingredient to the formulation is its consistency: the exact solution of (2.1) satisfies

the variational formulation (3.3). This constitutes an essential property in order to attain

higher-order spatial convergence. In addition, it must be noted that the numerical method

presented here does not rely on the advective fluxes being homogeneous in the conservative

variables, which is true only for a thermally perfect gas (see [2]). More complex equations

of state such as those needed for describing equilibrium chemistry, do not require any

particular approximation to be introduced, which is often the case with other techniques.

One can say that the formulation is consistent with the equation of state. For further

details about the method, the reader is referred to the works mentioned in this section.

IV . A simple chemistry model for equilibrium air

In this section, we describe a chemistry model for equilibrium air. Although it is

simple, it encompasses all the ingredients necessary to compute the composition of the gas

mixture and the quantities (2.18)–(2.21). The state of the system is given by the vector of

entropy variables, from which the chemical potential of the mixture µ and its temperature

T can be extracted trivially. On the other hand, a solver based on conservative variables

would typically have the density ρ and the internal energy e at its disposal to define the

thermodynamic state of the system. We find the entropy variables advantageous here, since

temperature is a more convenient variable than density, especially to express quantities

such as energies (internal energy, Gibbs’ free energy, etc.).

We consider air as a mixture of five thermally perfect gases: N2, O2, NO, N, and

13



O. Given the thermodynamic state of the system (µ, T ), we propose to compute the

equilibrium partial pressure of each component, and the quantities (2.18)–(2.21). In order

to solve for the five ps’s, we need five independent equations.

First, we can write the chemical potential as a function of the ps’s and T :

∑

s

ys(p)µs(ps, T ) = µ (4.1)

where ys and µs are respectively the mass fraction and the chemical potential of species s,

and p = {ps} is the vector of partial pressures. The mass fraction ys is related to the mole

fraction xs and the molar mass M̂s of species s, and to the molar mass M̂ of the mixture

by

ys =
M̂s

M̂
xs. (4.2)

In turn, xs and M̂ are given in terms of the partial pressures by

xs =
ps

p
(4.3)

and

M̂ =
∑

s

xsM̂s. (4.4)

The pressure is provided by Dalton’s law of partial pressures:

p =
∑

s

ps. (4.5)

Each species being considered as a thermally perfect gas, we have

ps = ρsRsT (4.6)

where ρs and Rs are respectively the density and the specific gas constant of species s. Rs

is linked to the universal gas constant R̂ = 8.31441 J/mol·K through

Rs =
R̂

M̂s

. (4.7)
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The chemical potential of species s is

µs = hs − Tss (4.8)

where, in the thermally perfect gas case,

hs = es(T ) + RsT (4.9)

ss =

∫
des

T
+ Rs lnT − Rs ln ps + s0s. (4.10)

The internal energy es is a function of temperature only, and s0s is the specific reference

entropy upon which we will elaborate later. We adopt the rigid-rotator and harmonic-

oscillator model. Under this assumption, a simple closed form expression exists for the

internal energy. It splits up into a translational, a rotational, and a vibrational contribu-

tion, to which the heat of formation h0
s must be added:

es(T ) = etrans
s + erot

s + evib
s + h0

s (4.11)

etrans
s (T ) = 3 ×

1

2
RsT (4.12)

erot
s (T ) =

{
0, for atoms

2 ×
1

2
RsT, for diatomic molecules

(4.13)

evib
s (T ) =





0, for atoms

RsΘ
vib
s

exp(Θvib
s /T ) − 1

, for diatomic molecules.
(4.14)

We ignore any electronic contribution to the internal energy. This makes the model simpler,

but does not limit the generality of the present development. Equation (4.10) can now be

integrated exactly, yielding

ss =
evib
s

T
− Rs ln

[
1 − exp(−Θvib

s /T )
]
+ cps lnT − Rs ln ps + s0s (4.15)

where

cps = cvs + Rs =





5

2
Rs, for atoms

7

2
Rs, for diatomic molecules.

(4.16)
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Finally, µs is given by

µs = cpsT (1 − lnT ) + RsT ln ps + h0
s + RsT ln

[
1 − exp(−Θvib

s /T )
]
− Ts0s. (4.17)

We introduce the molar chemical potentials

µ̂s = M̂sµs = ĉpsT (1 − lnT ) + R̂T ln ps + ĥ0
s + R̂T ln

[
1 − exp(−Θvib

s /T )
]
− T ŝ0s

= µ̂0
s(T ) + R̂T ln ps (4.18)

where µ̂0
s is the molar chemical potential of species s in the pure state and at unit pressure.

Equation (4.1) can be restated as

∑

s

ps

(
µ̂s − M̂sµ

)
= 0. (4.19)

This constitutes the first equation of our system.

The second equation is obtained by stating that the local proportion of nitrogen atoms

relative to oxygen atoms is constant, viz.,

2xN2
+ xNO + xN

2xO2
+ xNO + xO

=
79

21
(4.20)

where we have assumed that air is a mixture of 79% of nitrogen and 21% of oxygen by

volume. In terms of partial pressures, (4.20) can be rewritten as

2pN2
+ pNO + pN

2pO2
+ pNO + pO

=
79

21
. (4.21)

In addition to (4.19) and (4.21), we need three more equations. These are provided by

three independent chemical reactions,

N2 ⇀↽ 2N (4.22)

O2 ⇀↽ 2O (4.23)

NO ⇀↽ N + O. (4.24)

We can write the law of mass action for each of these. For consistency, we do not state

the equilibrium condition for reaction R in the usual form, i.e.,

∏

s

pνsR

s = KpR(T ) (4.25)
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where νsR is the stoichiometric coefficient of species s in reaction R, and KpR(T ) the

equilibrium constant of reaction R. The latter is a function of temperature which is often

given in the form of a curve fit of experimental results. In place of (4.25), we write for each

reaction the following statement which is equivalent, but does not require any extraneous

data:
∑

s

νsRµ̂s = 0. (4.26)

Once a model has been chosen for the internal energies of the different species, the system

is closed, and the addition of any superfluous piece of information, such as equilibrium con-

stants, can only introduce inconsistencies. However, in order to use the chemical potentials

given by (4.18) in the equation for reaction equilibrium (4.26), the absolute entropy must

be computed carefully, and in particular the integration constant ŝ0s. It is provided by

statistical mechanics, and is the sum of four terms:

ŝ0s = ŝtrans
0s + ŝrot

0s + ŝvib
0s + ŝel

0s (4.27)

where

ŝtrans
0s = R̂

{
ln

[(
2πms

h2

)3/2

k5/2

]
+

5

2

}
(4.28)

ŝrot
0s = R̂(1 − lnσsΘ

rot
s ) (4.29)

ŝvib
0s = 0 (4.30)

ŝel
0s = R̂ ln g0s. (4.31)

Equation (4.28) is known as the Sackur-Tetrode formula, in which ms is the mass of one

particle of species s:

ms =
M̂s

N̂
; (4.32)

N̂ = 6.022045×1023 is Avogadro’s number; h = 6.626176×10−34 J·s is Planck’s constant;

and Boltzmann’s constant k is given by

k =
R̂

N̂
. (4.33)
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In the rotational part ŝrot
0s , σs is the symmetry factor of the molecule, and Θrot

s is its char-

acteristic temperature for rotation. Although we have neglected any electronic excitation,

we must take into account the degeneracy of the ground level, which yields zero energy,

but is crucial for a correct evaluation of the reference entropy. The constants used in the

present model are gathered in Table 4 below. For the most part, they were taken from [3].

N2 O2 NO N O

M̂s (kg/mol) 28 × 10−3 32 × 10−3 30 × 10−3 14 × 10−3 16 × 10−3

ĥ0
s (J/mol) 0 0 89,775 470,820 246,790

Θvib
s (K) 3,393.50 2,273.56 2,738.87 — —

Θrot
s (K) 2.87 2.08 2.45 — —

σs 2 2 1 — —

g0s 1 3 4 4 9

Table 4. Chemical model constants

Finally, for the three independent chemical reactions (4.22)–(4.24), equation (4.33) reads

µ̂N2
= 2µ̂N (4.34)

µ̂O2
= 2µ̂O (4.35)

µ̂NO = µ̂N + µ̂O. (4.36)

The resulting system of five nonlinear equations for the ps’s in terms of µ and T ((4.19),

(4.21), (4.34)–(4.36)) can formally be expressed as

f(p, µ, T ) = 0 (4.37)

where

f =





∑
s ps(µ̂s − M̂sµ)

42pN2
− 158pO2

− 58pNO + 21pN − 79pO

2µ̂N − µ̂N2

2µ̂O − µ̂O2

µ̂N + µ̂O − µ̂NO





. (4.38)
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The system (4.37) is solved using the Newton-Raphson method: given an initial guess p(0)

for p, the (n + 1)st iterate is defined by

p(n+1) = p(n) + ∆p(n) (4.39)

where

∆p(n) = −J−1
(
p(n), µ, T

)
f

(
p(n), µ, T

)
(4.40)

and

J =

(
∂f

∂p

)

µ,T

. (4.41)

A good initial guess assures quadratic convergence of the process. Typically, the ps’s

are computed up to ten significant digits in two iterations. Initial values for the partial

pressures are obtained from a table look-up.

Once convergence of the Newton scheme has been achieved, the Jacobian J satisfies

Jdp +

(
∂f

∂µ

)

p,T

dµ +

(
∂f

∂T

)

p,µ

dT = 0 (4.42)

which is the differential of (4.37). Thus,

dp = −J−1

(
∂f

∂µ

)

p,T

dµ − J−1

(
∂f

∂T

)

p,µ

dT (4.43)

and
(

∂p

∂µ

)

T

= −J−1

(
∂f

∂µ

)

p,T

(4.44)

(
∂p

∂T

)

µ

= −J−1

(
∂f

∂T

)

p,µ

. (4.45)

These derivatives are obtained at essentially no extra cost, since in practice we use the

LU -decomposition of the last iteration Jacobian. From (4.44) and (4.45), we can calculate

any thermodynamic derivative. For instance, the partial derivatives of the mass fractions

with respect to pressure and temperature are given by
(

∂ys

∂p

)

T

= ys

[
1

ps

(
∂ps

∂p

)

T

−
∑

r

yr

pr

(
∂pr

∂p

)

T

]
(4.46)

(
∂ys

∂T

)

p

= ys

[
1

ps

(
∂ps

∂T

)

p

−
∑

r

yr

pr

(
∂pr

∂T

)

p

]
(4.47)
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where

(
∂ps

∂p

)

T

=

(
∂ps

∂µ

)

T
∑

r

(
∂pr

∂µ

)

T

(4.48)

(
∂ps

∂T

)

p

=

(
∂ps

∂T

)

µ

−

∑

r

(
∂pr

∂T

)

µ

∑

r

(
∂pr

∂µ

)

T

(
∂ps

∂µ

)

T

. (4.49)

We now have everything at our disposal to compute the quantities required to form (2.11).

For instance, we have

cp =

(
∂h

∂T

)

p

=
∑

s

ys

(
∂hs

∂T

)

p

+
∑

s

(
∂ys

∂T

)

p

hs (4.50)

αp =
1

v

(
∂v

∂T

)

p

=
1

T
+

1

R

∑

s

(
∂ys

∂T

)

p

Rs (4.51)

βT = −
1

v

(
∂v

∂p

)

T

=
1

p
−

1

R

∑

s

(
∂ys

∂p

)

T

Rs (4.52)

cv = cp −
α2

pvT

βT
(4.53)

a2 =
vcp

cvβT
(4.54)

where a is the speed of sound.

The techniques portrayed in this section may seem elaborate for a simple chemistry

model. In fact, all the ingredients necessary for dealing with the most complex situation

are contained within the previous description.

V . Numerical examples

We now present two sets of two-dimensional computations which illustrate the pro-

cedures described in the preceding sections. The first one contrasts the perfect gas and

the equilibrium chemistry solutions for the same inviscid case; the second one compares

viscous and inviscid treatments of the flow past a space-shuttle like configuration.
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The spatial domains are meshed using unstructured combinations of bilinear quadri-

laterals and linear triangles. Adaptive refinement is introduced in both the shock and the

boundary layer regions; we will elaborate on this strategy when we describe the individual

test cases and especially the Navier-Stokes one.

Convergence to steady state is achieved with the help of a first-order-in-time low-storage

fully implicit iterative solver based on the preconditioned GMRES algorithm (see [10, 15,

16]).

5.1. Flow over a blunt body . The geometry is a simple circular cylinder of unit radius

extended with two planes at 15◦ angle. The body faces an inviscid Mach 17.9 flow at zero

angle of attack. The free stream density and temperature are respectively 10−4 kg/m3 and

231 K. This test case is described by Desideri et al. in [4]. Figure 1 compares the equilibrium

chemistry solution (top) with the perfect gas one (bottom) for the same inflow conditions.

In view of the symmetry of the problem, the computation is performed on half the domain

only. The “chemistry” mesh contains 4,378 nodes and 8,573 elements; the “perfect gas”

one 4,856 nodes and 9,527 elements. Both meshes consist of triangular elements, and are

adaptively enriched in order to better capture the detached bow shock. Figure 1 presents

both meshes (a), pressure (b) and temperature (c) contours. The difference between the

two equations of state appears quite clearly: the stand-off distance of the shock is much

reduced in the more realistic equilibrium chemistry case. In addition, the temperature

rise through the shock goes down by a factor of almost 3. The numerical results are

found in remarkable agreement with the theoretical solutions. Typically, the relative error

on all stagnation values is under 0.5%, with minima still an order of magnitude below

this value (e.g., the stagnation temperature in the equilibrium case is overestimated by a

mere 0.0582%). In an industrial setting, the additional cost due to the chemistry routine

might be a real concern. In fact, it turns out that the cost of an equilibrium chemistry

computation is only about 20% higher than that of a perfect gas computation. Specially
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designed curve fits may further reduce this figure.

a) b) c)

Figure 1. Flow past a blunt body. Top: equilibrium chemistry; bottom:

perfect gas. a) Mesh; b) Pressure contours; c) Temperature

contours.

5.2. Flow over a double ellipse. With this example, we compare the Euler and the

Navier-Stokes solutions of the same flow over a generic space-shuttle geometry given by a

double ellipse. The inflow Mach number is 25; the angle of attack is 30◦. The free stream

conditions simulate a 75 km altitude in the U.S. Standard Atmosphere [19]: T∞ = 205.3 K

and p∞ = 2.52 Pa. For the viscous case, the Reynolds number is 22,000 per meter; the

geometry measures 0.76 m in length, with the major half axis of the larger ellipse being

0.6 m long; the wall temperature is fixed at 1500 K. These test cases are two-dimensional

variants of cases proposed at the Workshop on Hypersonic Flows for Reentry Problems –

Part II, held in Antibes, France, April 15–19, 1991.
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The meshes employed are shown in Figures 2 and 3. The Euler mesh consists of 8,307

nodes and 16,231 triangular elements. The Navier-Stokes mesh which contains 10,613

nodes, is an unstructured combination of 13,605 triangles in the main flow and of 3,620

quadrilaterals along the body. The structured strip is made of 20 layers of quadrilateral

elements; its thickness is adapted to match that of the boundary layer. This strategy, while

maintaining the advantages of unstructuredness, facilitates capturing the fine features of

the boundary layer. In addition, both meshes are enriched in the shock region. Figures 4–

11 present the pressure, temperature, N and O mass fraction contours for the inviscid (left)

and the viscous (right) cases. As one would expect, the pressure contours are quite similar

for the two solutions. The Navier-Stokes solution shows however a clear recombination

of nitrogen and oxygen at the wall. The canopy shock present in the Euler solution has

nearly completely vanished in the viscous calculation. Finally, one must note the extreme

thinness of the boundary layer on the windward side of the body.

Figure 2. Mesh: 8,307 nodes, 16,231

elements (inviscid case).

Figure 3. Mesh: 10,613 nodes,

17,225 elements (viscous

case).
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Figure 4. Pressure contours

(inviscid case).

Figure 5. Pressure contours (viscous

case).

Figure 6. Temperature contours

(inviscid case).

Figure 7. Temperature contours

(viscous case).

24



Figure 8. Atomic nitrogen mass

fraction contours (inviscid

case).

Figure 9. Atomic nitrogen mass

fraction contours (viscous

case).

Figure 10. Atomic oxygen mass

fraction contours

(inviscid case).

Figure 11. Atomic oxygen mass

fraction contours

(viscous case).
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VI . Conclusion

Consistency has been the leitmotiv of this work, and was indeed one of the main con-

cerns in designing the method. First, the Galerkin/least-squares finite element method is

consistent in that it is a residual method: the solution of the initial problem is a solution of

the numerical problem. Then, the discretization of the problem is performed consistently,

in the sense that no alterations to the physical model nor any additional approximations

are required by the numerical method. Finally, the equilibrium chemistry model is con-

sistent, since it uses only the minimum number of theoretical and experimental constants,

and thus eliminates any potentially dangerous redundancy. These ingredients result in a

mathematically sound flow solver for chemically reacting flows. Clearly, the quality of the

numerical results presented herein is a strong indication of the benefits derived from the

firm mathematical basis of the formulation.
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