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Abstract

Recent developments of a solver for the Navier-

Stokes equations using the Finite Element Method are

described. They include improved turbulent model-

ing capabilities using two-equation turbulence models

with accurate treatment of the transport terms and

boundary conditions. Consistent extensions to chem-

ically reacting air in equilibrium and nonequilibrium

using entropy variables are also described. Numeri-

cal results illustrate the capability of the method for

design calculations.

1. Introduction

A Navier-Stokes Finite Element solver has been

developed. This paper will present the more recent

additions to the simulation capabilities of the tool

and a few examples of three dimensional calculations

performed for aerothermal design of aircrafts. Accu-

rate and efficient implementation of turbulence models

based on transport equations on unstructured meshes

are described. Consistent extension to thermochemi-

cal equilibrium and nonequilibrium flows using entropy

variables is discussed.

The Navier-Stokes equations including the effects of

turbulence are written in section 2 and a review of the

Galerkin/least-squares method is presented. In section

3, the turbulence models implementation is discussed

with special emphasis on the numerical technique used.

In section 4, equilibrium and nonequilibrium thermo-

chemical models are described. Finally numerical re-

sults are presented in section 5.
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2. Overview of the solver

2.1. Governing equations

Let ρ, u, and E be respectively the density, the

velocity, and the total energy per unit mass of fluid.

The Navier-Stokes equations read:

• conservation of mass

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

• Newton’s second law

∂ρu

∂t
+ ∇ · (ρu ⊗ u) = ∇ · σ, (2)

• conservation of energy

∂ρE

∂t
+ ∇ · (ρEu) = ∇ · (σu) −∇ · q, (3)

where σ is the Cauchy stress tensor and q is the heat-

flux vector. This set of partial differential equations is

subsidized with appropriate constitutive relations and

state equations which we will describe in the follow-

ing sections. We can notice that up to this point no

particular alteration to the usual Navier-Stokes equa-

tions is made to accommodate for turbulence and/or

high-temperature effects. Thus the strategy developed

for the solution of laminar flows of a perfect gas can

be formally applied. The numerical method used is

discussed in the next section.

2.2. The Galerkin/least-squares formulation

This formulation has developed into a general ap-

proach for a wide class of problems. The basic idea

can be understood by considering the steady scalar

advection-diffusion model problem:

Lu = a · ∇u −∇ · K∇u = 0.

where a and K are constant parameters. For simplic-

ity we assume that u vanishes on the boundary. The

Galerkin method is defined as:
Copyright c©1994 by the American Institute of Aeronautics and

Astronautics, Inc. All rights reserved.
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Find uh ∈ Vh such that for all wh ∈ Vh,

B(wh, uh) = 0 where

B(wh, uh) =

∫

Ω

(wha · ∇uh + ∇wh · K∇uh)dΩ

The Galerkin/least-squares method can be defined

by the following variational equation:

B(wh, uh) +
∑

e

∫

Ωe

LwhτLuhdΩe = 0

The additional term is the sum of integrals over el-

ement interior (a finite element discretization of the

domain is assumed). It adds stability to the Galerkin

formulation without upsetting the consistency of the

method. A convergence analysis of this method has

been performed.1 For the multidimensional case, the

numerical diffusion is characterized by the diffusiv-

ity matrix Knum = aτaT where τ =
h

2

f(Pe)

|a| and

f(Pe) = coth(Pe)−1/Pe is a doubly asymptotic func-

tion of the element Peclet number (Pe = |a|h/2|K|)
going to zero when diffusion dominates and to one

when advection dominates.

The Galerkin/least-squares method can be ex-

tended to symmetric linear advective systems. In the

case of a system of n equations, τ is an n × n sym-

metric matrix; we can write its eigenvalues decompo-

sition τ =
∑n

i=1 TiτiT
T
i . In the presence of phys-

ical diffusion, the matrix τ is modified; it becomes

τ =
∑n

i=1 Tif(Pei)τiT
T
i where Pei is the Peclet num-

ber corresponding to the ith mode, Pei =
h

2

τi

Ki
. The

doubly asymptotic behavior is present in each mode in

the numerical diffusion. This ingredient of the method

is critical in establishing the convergence results pre-

sented in Hughes, Franca and Mallet2 for linear sys-

tems of advection-diffusion equations. The formula-

tion can be applied to the compressible Navier-Stokes

equations which can be written in the form of a sym-

metric advective-diffusive system in terms of entropy

variables, as we will see shortly.

Entropy variables

We define the generalized entropy function H by

H = H(U) = −ρs, where s is the physical entropy per

unit mass. H is a strictly convex function of the vector

of conservative variables,

U =
1

v





1
u

e + |u|2/2





where v = 1/ρ is the specific volume. Consequently,

the relation V T = ∂H/∂U constitutes a legitimate

change of variables. V is referred to as the vec-

tor of (physical) entropy variables. They were origi-

nally derived with the perfect gas case in mind, but

were recently extended to take chemistry and high-

temperature effects into account.3 For example, in the

case of a general divariant gas such as one describing

a flow in thermochemical equilibrium (see section 4),

they can be written as

V =
1

T





µ − |u|2/2
u

−1



 ,

where µ = e + pv−Ts is the chemical potential of the

considered gas mixture, p and T being respectively the

thermodynamic pressure and temperature. Introduc-

ing this change of variables, the mean flow equations

read:

Ã0
∂V

∂t
+ Ã · ∇V = ∇ · (K̃∇V ) (4)

in which

(i) Ã0 is symmetric and positive definite;

(ii) the Ãi’s are symmetric (Ã = {Ãi});
(iii) K̃ is symmetric and positive semi-definite.

We wish to stress the fact that the method is conser-

vative, even though entropy variables are used. When

using entropy variables, the weak formulation enforces

the Clausius-Duhem inequality, which constitutes a

statement of the second law of thermodynamics, on

the discrete solution. Numerical solutions are actually

carried out in terms of entropy variables.

Discontinuity capturing operator

Although the Galerkin/least-squares method is a

stable method, oscillations may occur in the vicinity of

strong gradients. A nonlinear discontinuity-capturing

operator is added to the formulation. It is defined el-

ementwise as:
∫

Ωe

νh
(
L(V h)

)
∇ξW h · Ã0∇ξV h dΩ

where ∇ξ is the gradient in the element local coor-

dinate system. Various definitions of νh have been

proposed including linear and quadratic versions.4

Implicit iterative time-marching algorithm

Convergence to steady-state of the compressible

Navier-Stokes equations is achieved through an im-

plicit iterative time-marching algorithm. At each dis-

crete time tn, the finite element discretization leads to

the following nonlinear problem:
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Given the solution vector v(n−1) at time tn−1, and

a time increment ∆t, find the solution vector v at time

tn, which satisfies the nonlinear system of equations

G(v; v(n−1), ∆t) = 0 (5)

G is a system of nonlinear functionals of v and of

parameters v(n−1) and ∆t. This system is solved for

v by performing a linearization through a truncated

Taylor series expansion of G. This leads to a linear

nonsymmetric system of equations of the form

J p = −R

where

J =
∂G

∂v
(v(n−1); v(n−1), ∆t) (6)

p
def
= v − v(n−1) (7)

R = G(v(n−1); v(n−1), ∆t) (8)

R is the residual of the nonlinear problem and J is the

consistent Jacobian associated with R. The consistent

Jacobian is often replaced by a Jacobian-like matrix J
leading to a more stable time-marching algorithm.5 A

residual-like vector R associated with J can be defined

as

J def
=

∂R
∂v

The system of equations J p = −R is preconditioned

by a nodal block-diagonal preconditioner6 and solved

using the Generalized Minimal RESidual (GMRES)

algorithm introduced by Saad and Schultz.7

3. Turbulent flow modeling

using transport equations

3.1. Closure assumptions

The partial differential equations used to describe

the mean flow field are the mass-averaged Navier-

Stokes equations of a compressible fluid. The closure

of the Reynolds stress tensor and heat flux is obtained

using a classical Boussinesq hypothesis and the con-

cept of eddy viscosity. The eddy viscosity is computed

through a two-equation turbulence model, thus the

Navier-Stokes equations are augmented by two addi-

tional partial differential equations for the turbulence

quantities. Modeling constants are necessary in both

of these equations for closure.

The only change encountered by the Navier-Stokes

equations written in mass-average form is the new def-

inition of the Cauchy stress tensor σ, the total energy

E, and the heat flux vector q which now read:

σ = (µvisc + µvisc
t ){∇u + ∇uT − 2

3
∇ · u1}

− (p +
2

3
ρk)1,

E = e +
1

2
|u|2 + k,

q = −(κ + κt)∇T.

The molecular viscosity is µvisc; µvisc
t is the eddy

viscosity; k is the turbulent kinetic energy; κ and κt

are respectively the laminar and turbulent coefficient

of thermal conductivity; the laminar Prandtl number

is taken as Pr = µvisccp/κ = 0.72 and the turbulent

Prandtl number is taken as Prt = µvisc
t cp/κt = 0.9,

where cp is the specific heat at constant pressure. The

internal energy e and the equation of state are defined

according to the chosen thermodynamic model.

3.2. Turbulence Model

The turbulence models used belong to the k − ǫ

family.8 The extra equations which are needed can be

written as

ρ
∂si

∂t
+ ρu · ∇si −∇ ·

(
(µvisc +

µvisc
t

σi
)∇si

)
= Hi.

In the case of the classical k − ǫ turbulence model the

variables are s1 = k and s2 = ǫ . The eddy viscosity

is then defined as

µvisc
t = ρCµ

k2

ǫ
.

These equations are convection-diffusion equations

mainly coupled through their source terms. The tur-

bulence quantities are positive, therefore one is seeking

a scheme which enforces this constraint. This can be

achieved through the use of a monotone discrete ad-

vective operator.

Another difficulty arising in the use of transport

equations turbulence models lies in the treatment of

the boundary conditions. Two main strategies can be

utilized, one can either modelize the viscous sublayer

by suitable law of the wall or one can integrate the

Navier-Stokes equations and the turbulence equations

through the viscous sublayer. This point will be ad-

dressed later.
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3.3. Monotone Scheme for the turbulence equa-

tions

The positivity of the turbulence variables is

achieved by the combination of two main features :

the use of a monotone advective scheme and the time

discretization of the source term.

First we will investigate the issue of the spatial dis-

cretization scheme. The basic choice to enforce the

monotony of the discrete advection diffusion equation

would be to used a first order upwind scheme. In so

doing, even on a simple advection diffusion equation,

the sharp gradient are completely smeared out as il-

lustrated in figure 1. It is thus necessary to implement

a scheme of higher accuracy. The scheme chosen is

the one advocated by Deconinck and Roe.9 The main

advantages of the scheme, along with its monotonicity

and its low diffusion, are its compact stencil and the

fact that all the necessary evaluations are performed

element by element yielding an easy implementation

in a Finite Element framework as well as a straight-

forward vectorization. The efficiency of the scheme is

illustrated on the same advection-diffusion test prob-

lem solved with the first order scheme (figure 2). Such

an elaborate treatment is needed in order to calibrate

the accuracy of the modeling of the turbulent effects.

With too coarse a numerical treatment such as a first

order upwinding it is impossible to analyze the validity

of any turbulence model.

3.4. Time discretization for the turbulence

equations

For the k − ǫ model the source terms read

Hk = µvisc
t P − 2

3
ρkS − ρǫ,

and

Hǫ = C1
ǫ

k
µvisc

t P − 2

3
C1ǫS − ρC2

ǫ2

k
.

It is clear that the source terms can be written as Hi =

H+
i − H−

i , with both terms positive. Then the time

discretization applies as follow H+
i is treated explicitly

and H−

i semi-implicitly. The final time discretization

for the k − ǫ model is

ρn(
1

∆t
+

ǫn

kn
)kn+1 + ρnun · ∇kn+1

−∇ ·
(

(µvisc +
µvisc

t
n

σk
)∇kn+1

)

=
ρn

∆t
kn + Pn,

ρn(
1

∆t
+ C2

ǫn

kn
)ǫn+1 + ρnun · ∇ǫn+1

−∇ ·
(

(µvisc +
µvisc

t
n

σǫ
)∇ǫn+1

)

=
ρn

∆t
ǫn + C1

ǫn

kn
Pn,

The terms P and S are given by

P = (∇u + ∇uT ) : ∇u − 2

3
(∇ · u)2.

S = ∇ · u
The modeling constants have their usual values: σk =

1.0, σǫ = 1.3, C1 = 1.44, C2 = 1.92,

3.5. Coupling with the Navier-Stokes equations

The discretized mean flow equations and the tur-

bulence equations are integrated using a splitting

method. At a current time step, we solve the Navier-

Stokes equations using turbulence data evaluated at

the previous time while the turbulence equations are

solved using the flow variables computed at the previ-

ous time.

3.6. Modeling in the vicinity of a solid boundary

The above turbulence transport equations, for the

k−ǫ model are derived under the hypothesis of a large

Reynolds number. Thus, in region close to the wall,

such as in the viscous sublayer where molecular effects

become important, these equations are not valid. Two

approaches have been developed: one is based on a law

of the wall and the other uses a two-layer model.

In order to avoid integrating the turbulence equa-

tions in these regions we make use of wall functions.10

Then, the equations for the mean flow and for the

turbulence variables are integrated up to a distance

y = yw away from the wall. In the region between the

actual wall and the limit of the computational domain

0 < y < yw the flow is assumed to follow a law of the

wall
u

uτ
= f

(
ρuτy

µvisc

)

The function f splits the wall layer into three parts

and degenerates consistently with a no-slip boundary

condition if the mesh happens to be fine enough.

At each time step an estimate of the velocity u at

y = yw can be obtained, then the value of the wall

shear stress uτ is computed from the law of the wall

(using a Newton method) and this value is used to

get Dirichlet boundary conditions for k and ǫ at the

wall. In practice the point y = yw is close enough to
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the wall to actually be considered laying on the wall

and the boundary conditions may be imposed on the

wall surface. For the mean flow equation this results

of course in a wall slip boundary condition.

To integrate the equation down to the wall a two-

layer model is used. This model has been introduced

by Chen and Patel11 and modifies the k equation in the

near wall region while the ǫ equation is replaced by an

algebraic definition of the dissipation ǫ, away from the

wall the standard k − ǫ equations are conserved. We

thus use two different turbulence models depending on

the location with respect to a solid wall. In the wall

region we have a one-equation model

ρ
∂k

∂t
+ ρu · ∇k −∇ ·

(
(µvisc +

µvisc
t

σk
)∇k

)

= µvisc
t P − 2

3
ρkS − ρǫ,

and in this case the eddy viscosity is evaluated by

µvisc
t = ρCµ

√
klµ,

with

lµ = Cy (1 − exp(−Ry/A)) ;

and ǫ is computed as follows

ǫ =
k3/2

lǫ

with

lǫ = Cy (1 − exp(−Ry/A2)) .

with

Ry =
ρ
√

ky

µvisc

where y is the distance to the wall. The blending be-

tween the two models is performed at Ry = 150, which

corresponds to y+ = 80 which is well within the loga-

rithmic region.

Since the Navier-Stokes equations are integrated

down to the wall, separation can be accurately com-

puted. Moreover, the mesh needs to be fine enough

to allow accurate computation of the wall layer (y+ ≤
10).

4. Thermochemical models

4.1. Thermochemical equilibrium

The very high Mach number flows associated with

hypersonic reentry flight involve strong shock waves.

Upstream of the bow shock, the temperature is low

and air is a uniform mixture. Through the shock, the

temperature increases, vibrational modes are excited,

and dissociation takes place. Since dissociation reac-

tions are endothermic, the temperature rise tends to

be limited. In a first step, the equilibrium hypothesis

can be made: it assumes that the chemical character-

istic time scale is much smaller than that of the fluid

flow. Typically, flow solvers must be modified so that

at each time step, the state equation takes into account

the local state of equilibrium.

In the present paper, air is considered as a mixture

of five species: N2, O2, NO, N, and O. In our case,

the thermodynamic state of the system is defined by

the entropy variables, viz., the chemical potential of

the mixture µ and the temperature T . Given this two

quantities, we need to solve for the partial pressures

ps of the 5 considered species. Consequently we need

a set of 5 equations. Two of these are provided first

by writing the chemical potential as a function of the

ps’s and T, and secondly by stating that the local pro-

portion of oxygen atoms relative to nitrogen atoms is

constant:

∑

s

ys(ps)µs(ps, T ) = µ (9)

2pN2
+ pNO + pN

2pO2
+ pNO + pO

=
79

21
(10)

where ys is the mass fraction of species s. It is given

in terms of the partial pressures as

ys =
M̂s

M̂
xs. (11)

In turn, xs, the mole fraction of species s, and M̂ , the

molar mass of the mixture, are given in terms of the

partial pressures and of the molar masses M̂s of the

different species by

xs =
ps

p
, M̂ =

∑

s

xsM̂s. (12)

The pressure is provided by Dalton’s law of partial

pressures:

p =
∑

s

ps. (13)

The chemical potential of species s, µs, is related to

the molar chemical potential of the same species, µ̂s,

by

µ̂s = µsM̂s = µ̂0
s(T ) + R̂T ln ps (14)

where R̂ = 8.31441 J/mol.K is the universal gas con-

stant, and µ̂0
s is the molar chemical potential of species

s in the pure state and at unit pressure. It is assumed
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here that µ̂0
s is that of a thermally perfect gas. The

corresponding expression can be found in Chalot and

Hughes.12 Particular care must be taken in computing

the absolute entropy whose reference value is provided

by statistical mechanics.

Three extra equations are needed: law of mass ac-

tion can be written for three independent chemical re-

actions. For consistency, we do not state the equilib-

rium condition for reaction R in the usual form, i.e.,

∏

s

pνsR

s = KpR(T ) (15)

where νsR is the stoichiometric coefficient of species s

in reaction R, and KpR(T ) the equilibrium constant

of reaction R. The latter is a function of temperature

which is often given in the form of a curve fit of exper-

imental results. In lieu, we write for each reaction the

following statement which is equivalent to (15) , but

does not require any extraneous data:

∑

s

νsRµ̂s = 0. (16)

Once a model has been chosen for the internal energies

of the different species, the system is self-sufficient, and

the addition of any extra data, such as equilibrium

constants, can only introduce inconsistencies. For the

5 species model considered here, these equations read:

µ̂N2
= 2µ̂N (17)

µ̂O2
= 2µ̂O (18)

µ̂NO = µ̂N + µ̂O. (19)

The above set of 5 algebraic equations is solved us-

ing Newton method. An initial guess for the 5 par-

tial pressures is obtained from a table look-up, so that

convergence of the Newton process is reached in 2 it-

erations. The last Newton Jacobian matrix provides

the necessary derivatives to construct the matrices Ã0

and Ãi’s.
12

4.2. Thermochemical nonequilibrium

We present here the extension of the solver de-

scribed above to thermochemical nonequilibrium. We

still consider air as a mixture of the five species N2,

O2, NO, N, and O, interacting in any number of finite

rate chemical reactions. At this stage, the vibrational

degrees of freedom of all molecules are represented by

a single temperature T vib which can be in or out of

equilibrium with the trans-rotational temperature T .

The Navier-Stokes equations (1) –(3) are replaced

by the following set of equations:

• species conservation of mass

∂ρs

∂t
+ ∇ · (ρsu) + ∇ · Js = Ωs s = 1, . . . , 5, (20)

• Newton’s second law

∂ρu

∂t
+ ∇ · (ρu ⊗ u) = ∇ · σ, (21)

• conservation of energy

∂ρE

∂t
+∇·(ρEu)+∇·(Jh) = ∇·(σu)−∇·q−∇·qvib,

(22)

• conservation of vibrational energy

∂ρevib

∂t
+ ∇ · (ρevibu) + ∇ · (Jevib)

= −∇ · qvib + Ω · evib + QT−Tvib

. (23)

J = [Jsi]
T = [ρsvsi]

T is the mass diffusion matrix,

where vsi is the diffusion velocity of species s in direc-

tion i; h and evib are respectively the enthalpy and vi-

brational energy vectors, h = {hs} and evib = {evib
s };

q and qvib are the heat flux vectors, respectively due

to gradients in the translational-rotational tempera-

ture T and the vibrational temperature T vib; Ω is the

vector of the production rates of the different species,

Ω = {Ωs}; and QT−Tvib

is the translation-vibration

energy transfer rate.

Without any particular assumption on the expres-

sions for the different energies (except that they be

functions of the temperatures only), the entropy vari-

ables can be derived to be:

V =
1

T





µ − |u|2
2

1n

u

−1

1 − T

T vib





(24)

where µ = {µs} is the vector of chemical potentials,

and 1T
n = {1, . . . , 1︸ ︷︷ ︸

n terms

}. In the present work the rigid-

rotator and harmonic-oscillator model together with

the perfect gas assumption were adopted as the equa-

tions of state.

Entropy variables appear at their best in this ther-

mochemical context. Each energy conservation equa-

tion is replaced by an equation describing the evolution

of a quantity trivially related to the different temper-

atures: there is no need of Newton-type iterations at

the end of each time step to extract the temperatures
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from the energies and to compute the chemical reac-

tion rates, the transport coefficients, and other physi-

cal quantities given in terms of temperatures.

In order to satisfy the symmetry requirements,

transport phenomena must be modeled using the com-

plete multi-component approach. In this context it is

interesting to see how the preservation of symmetry

and the respect of the second law of thermodynamics

condition the form of constitutive relations to rigorous

expressions derived by statistical mechanics means. In

particular, the diffusion velocities are given by

Jsi = ρsvsi =
∑

r

ρ
M̂sM̂r

M̂2
Dsrdri (25)

where

dsi = xs,i + (xs − ys)(ln p),i (26)

where the Dsr’s are the multicomponent diffusion co-

efficients. From the viscosity coefficients of the pure

gases the viscosity coefficient of the mixture is com-

puted using Wilke’s mixing rule. Species heat conduc-

tion coefficients are derived using a modified Eucken

formula and are mixed in a fashion which ensures con-

tinuity in the thermodynamic equilibrium limit.

The chemical production rate is computed in the

usual way13 and does not take into account any

vibration-dissociation coupling yet. The vibrational

source term is composed of two parts Ω · evib and

QT−Tvib

. The first one expresses the fact that

molecules disappear or are created with the mean flow

vibrational energy ignoring the preferential removal

from the higher energy levels. The second one con-

trols the equilibration of vibration with translation.

It takes the usual Landau-Teller form where the vi-

brational relaxation time is computed with the classi-

cal semi-empirical formula developed by Millikan and

White.

5. Numerical results

Calculation on the RAE2822 transonic airfoil illus-

trates the accuracy of the solver. The computed case

is characterized by M∞ = 0.75, Re = 6.2 × 106 and

α = 3.19◦. The computation has been carried out us-

ing the law of the wall. Figure 3 shows the iso-Mach

lines, figure 4 shows the pressure coefficient on the air-

foil and figure 5 shows the skin friction coefficient. Re-

sults compare very well with the experimental data.14

Calculation of the flow over the canopy of Hermes

is presented next. It was performed at the most criti-

cal point on the reentry flight path for the windshield

design: the altitude is 60 km, the Mach number is 20

and the angle of attack is 30 degrees. At this altitude

the Re/m is 120,890. The equilibrium real gas hy-

pothesis was used along with radiative boundary con-

ditions. The mesh includes approximately one million

elements. The surface mesh is presented in Figure 6.

The finite element approach allows mesh refinement

and a precise representation of the details of the geom-

etry in the windshield area. Considerable mesh density

is used in the direction perpendicular to the wall. Skin

friction lines are presented in Figure 7, complex flow

structure is observed. Detailed discussion of Navier-

Stokes calculations related to the aerothermal design

of Hermes can be found in Näım et al.15

The nonequilibrium capability is demonstrated by

the simple test case of an inviscid Mach 17.9 flow at

zero angle of attack past a circular cylinder with a

10 cm nose radius and extended by 15◦ planes. The

free stream density and temperature are respectively

10−4 kg/m3and 231 K. A similar test case is described

by Desideri et al.16 The mesh, pressure, temperature

and NO-mass-fraction contours are presented in fig-

ures 8–11. The equilibrium and nonequilibrium solu-

tions are displayed respectively in the top and bottom

parts. Comparison between perfect gas and equilib-

rium solutions can be found in previous work.12

Conclusion

New extensions to a Navier-Stokes solver have been

presented. This solver provides a basis for complex

flow simulations dealing with chemistry (equilibrium/

nonequilibrium hypersonic flows) or turbulence. Fur-

ther developments are underway to propose and test

better turbulence models; to improve the modeling of

nonequilibrium effects in the flow and provide detailed

descriptions of the boundary layer and wall phenom-

ena; to accelerate convergence. It should finally be

emphasized that the solver can be implemented with

high efficiency on massively parallel machines along

the lines of Johan et al.,17 which leads to unprece-

dented usefulness of the method for design purposes

and opens the way to the simulation of ever more chal-

lenging flow problems.
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Figure 1. First order upwinding
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Figure 2. Roe-Deconinck scheme
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Figure 3. RAE2822: M∞ = 0.75,
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Figure 4. Pressure coefficient (−Cp)

-0.001

0

0.001

0.002

0.003

0.004

0.005

0 0.2 0.4 0.6 0.8 1
X/C

Figure 5. Skin friction coefficient (Cf )
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Figure 6. Mesh of the canopy region

of the Hermes spaceplane
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Figure 7. Skin friction lines

Figure 8. Flow past a blunt body:

Mesh

Figure 9. Flow past a blunt body:

Pressure contours
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Figure 10. Flow past a blunt body:

Temperature contours

Figure 11. Flow past a blunt body:

NO mass-fraction contours


