
1

A Multi-platform Shared- or Distributed-Memory Navier-Stokes Code

F. Chalota, Q.-V. Dinhb, M. Malletb, A. Näıma, and M. Ravacholb

aDassault Aviation,
Direction Technique Aéronefs/Modélisation Aérodynamique,
78, quai Marcel Dassault, 92214 Saint-Cloud, France

bDassault Aviation,
Direction Prospective/Département des Etudes Scientifiques Amont,
78, quai Marcel Dassault, 92214 Saint-Cloud, France

This paper describes the implementation of a finite-element Navier-Stokes code on two
parallel architectures: the IBM SP2 and the NEC SX-4. Although these implementa-
tions are based on two different memory representations, the shared- and the distributed-
memory paradigms, the actual source codes are extremely similar, thanks to the finite-
element structure of the program. Two industrial applications exemplify the use of parallel
computers in the Aerodynamic Modelization Department at Dassault Aviation.

1. INTRODUCTION

Since its beginning in the seventies, Computational Fluid Dynamics has always been
an avid consumer of computing resources, and thus developed concurrently with the
progresses in computer hardware. Born with the good old mainframes, CFD came to
maturity with the vector architectures of the eighties (Cray, Convex, IBM, NEC). The
late eighties and the early nineties saw the emergence of RISC-based workstations which
outgrew the vector supercomputers in power and ease of programming. But only the new
massively parallel architectures were candidates to meet the TeraFLOPS challenge of the
nineties [10] and the ever increasing computing power demands of CFD (complex 3-D
geometries, unsteady Navier-Stokes computations, . . .).

Dassault Aviation was no exception in its experience of CFD with the evolution of
computer hardware and went through the necessary code alterations. Dassault Aviation
early dedication to unstructured meshes and to finite element type methods induced a
natural interest towards domain decomposition and parallel processing. At some point a
version of the code was ported to the Connection Machine series of Thinking Machines
(CM-2, CM-200, and CM-5) [6]. However, Dassault Aviation’s own experience with par-
allelism was still limited to automatic procedures provided by compilers on IBM and Cray
architectures.

In 1992, VIRGINIE, the Navier-Stokes code in use at Dassault Aviation, was successfully
ported onto the Intel IPSC 860 at ONERA [3]. The first in house massively parallel
architecture dedicated to CFD was an IBM SP1, soon upgraded to an SP2. The same

2

message passing techniques as those used for the IPSC were applied to the SP2 version.
Dating back from the time of the Hermès program, Dassault and the NLR have co-

operated on Navier-Stokes computations using NLR’s NEC SX-3 [4]. The high level
of vectorization of Dassault-Aviation’s Navier-Stokes code enabled performances in the
500 MFLOPS range. Since the replacement of NLR’s SX-3 with an SX-4, the code had
to be revisited to take advantage of the parallel capabilities.

We describe here the implementations of VIRGINIE on both the IBM SP2 and the NEC
SX-4.

2. DESCRIPTION OF THE CODE

Dassault Aviation’s Navier-Stokes code, called VIRGINIE, uses a finite element ap-
proach, based on a symmetric form of the equations written in terms of entropy vari-
ables. The advantages of this change of variables are numerous: in addition to the strong
mathematical and numerical coherence they provide (dimensionally correct dot product,
symmetric operators with positivity properties, efficient preconditioning), entropy vari-
ables yield further improvements over the usual conservation variables, in particular in
the context of chemically reacting flows (see [1]).

2.1. The symmetric Navier-Stokes equations
As a starting point, we consider the Euler and Navier-stokes equations written in con-

servative form:

U,t + F adv
i,i = F diff

i,i (1)

where U is the vector of conservative variables; F adv
i and F diff

i are, respectively, the
advective and the diffusive fluxes in the ith-direction. Inferior commas denote partial
differentiation and repeated indices indicate summation.

Equation (1) can be rewritten in quasi-linear form:

U,t + AiU,i = (KijU,j),i (2)

where Ai = F adv
i,U is the ith advective Jacobian matrix, and K = [Kij] is the diffusivity

matrix, defined by F diff
i = KijU,j. The Ai’s and K do not possess any particular property

of symmetry or positiveness.
We now introduce a new set of variables,

V T =
∂H

∂U
(3)

where H is the generalized entropy function given by

H = H(U) = −ρs (4)

and s is the thermodynamic entropy per unit mass. Under the change of variables U 7→ V ,
(2) becomes:

Ã0V,t + ÃiV,i = (K̃ijV,j),i (5)

3

where

Ã0 = U,V (6)

Ãi = AiÃ0 (7)

K̃ij = KijÃ0. (8)

The Riemannian metric tensor Ã0 is symmetric positive-definite; the Ãi’s are symmetric;
and K̃ = [K̃ij] is symmetric positive-semidefinite. In view of these properties, (5) is
referred to as a symmetric advective-diffusive system.

For a general divariant gas, the vector of so-called (physical) entropy variables, V , reads

V =
1

T





µ − |u|2/2
u

−1





(9)

where µ = e + pv − Ts is the chemical potential per unit mass; v = 1/ρ is the spe-
cific volume. This expression for the V -variables must be contrasted with that for the
conservative variables which can be written in the following form:

U =
1

v





1
u

e + |u|2/2





(10)

Taking the dot product of (5) with the vector V yields the Clausius-Duhem inequality,
which constitutes the basic nonlinear stability condition for the solutions of (5). This
fundamental property is inherited by appropriately defined finite element methods, such
as the one described in the next section.

2.2. The Galerkin/least-squares formulation
The Galerkin/least-squares (Galerkin/least-squares) formulation introduced by Hughes

and Johnson, is a full space-time finite element technique employing the discontinuous
Galerkin method in time (see [8]). The least-squares operator ensures good stability
characteristics while retaining a high level of accuracy. The local control of the solution in
the vicinity of sharp gradients is further enhanced by the use of a nonlinear discontinuity-
capturing operator.

We consider the time interval I =]0, T [, which we subdivide into N intervals In =
]tn, tn+1[, n = 0, . . . , N − 1. Let Qn = Ω × In and Pn = Γ × In where Ω is the spatial
domain of interest, and Γ is its boundary. In turn, the space-time “slab” Qn is tiled by
(nel)n elements Qe

n. Consequently, the Galerkin/least-squares variational problem can be
stated as

Within each Qn, n = 0, . . . , N − 1, find V h ∈ Sh
n (trial function space), such that for

all W h ∈ Vh
n (weighting function space), the following equation holds:

∫

Qn

(
− W h

,t · U(V h) − W h
,i · F

adv
i (V h) + W h

,i · K̃ijV
h

,j

)
dQ

+
∫

Ω

(
W h(t−n+1) · U(V h(t−n+1)) − W h(t+n) · U(V h(t−n))

)
dΩ

4

+
(nel)n∑

e=1

∫

Qe

n

(
LW h

)
· τ

(
LV h

)
dQ

+
(nel)n∑

e=1

∫

Qe

n

νhgijW h
,i · Ã0V

h
,j dQ

=
∫

Pn

W h ·
(
− F adv

i (V h) + F diff
i (V h)

)
ni dP. (11)

The first and last integrals represent the Galerkin formulation written in integrated-by-

parts form. The solution space consists of piecewise polynomials which are continuous
in space, but are discontinuous across time slabs. Continuity in time is weakly enforced
by the second integral in (11), which contributes to the jump condition between two
contiguous slabs, with

Zh(t±n) = lim
ε→0±

Zh(tn + ε). (12)

The third integral constitutes the least-squares operator where L is defined as

L = Ã0
∂

∂t
+ Ãi

∂

∂xi

−
∂

∂xi

(K̃ij

∂

∂xj

). (13)

τ is a symmetric matrix for which definitions can be found in [8]. The fourth integral is
the nonlinear discontinuity-capturing operator, which is designed to control oscillations
about discontinuities, without upsetting higher-order accuracy in smooth regions. gij is
the contravariant metric tensor defined by

[gij] = [ξ,i · ξ,j]
−1 (14)

where ξ = ξ(x) is the inverse isoparametric element mapping, and νh is a scalar-valued
homogeneous function of the residual LV h. The discontinuity capturing factor νh used in
the present work is an extension of that introduced by Hughes, Mallet, and Shakib (see
[8]).

A key ingredient to the formulation is its consistency: the exact solution of (1) satisfies
the variational formulation (11). This constitutes an essential property in order to attain
higher-order spatial convergence.

2.3. Linear solver and residual evaluations
Convergence to steady state of the compressible Navier Stokes equations is achieved

through a fully-implicit iterative time-marching procedure based on the GMRES algo-
rithm (see [7]).

A low-storage extension based solely on residual evaluations was developed by Johan
[5]. It reveals particularly adapted to parallel processing, where the linear solver often
constitutes a painful bottleneck.

Thanks to the finite element approach, the integrals of equation (11) which constitute
the residual, are first computed on each element; then the global residual is constructed
from the local element residuals using the so-called assembly operation:

R =

nel

A
e=1

Re (15)

5

This operation is depicted in Figure 1: the residual contribution of element e, denoted
Re, is added to the global residual R, converting the local element node numbering to
the global numbering.

1

2

3

532

2257

4603

R

Re

Figure 1. Schematics of the assembly
operation.

On a vector architecture, the elements are colored into blocks of disjoint elements in
order to avoid recurrence in the assembly operation and to yield the efficient vectorization
of the complete residual evaluation process. Element coloring is done through a renum-
bering into blocks of lvec elements. The value of lvec is chosen according to the length
of the vector registers of the considered computer (typically from 64 to 512).

A residual evaluation can be performed by the FORTRAN loop below:

do 1000 iblk = 1, nelblk

iel = lcblk(iblk)

nvec = lcblk(iblk+1) - iel

call local (ien(iel), v, ve, ndof)

call local (ien(iel), x, xe, nsd)

call getRe (ve, xe, re)

call globad(ien(iel), r, re, ndof)

1000 continue

Loop 1000 consists of a loop over the nelblk element blocks. For each block lcblk(iblk)

gives the number of the first element of the block. nvec = lcblk(iblk+1) - lcblk(iblk)

is the actual size of the block (nvec ≤ lvec). Quantities such as the entropy variables v
and the node coordinates x then are localized to the elements of block iblk (ien is the
connectivity array which give the global numbers of the nodes in a given element; ndof is
the number of degrees of freedom per node; and nsd is the space dimension). The call to
getRe contains the actual loop over the elements of the block and evaluates the integrals

6

of (11) into re. Then comes the assembly operation which is performed through the call
to globad which does the “global add” of re into r.

This algorithm is the heart of VIRGINIE and has proven extremely efficient on many
scalar or vector architectures. It is the basis on which all the parallel developments we
are going to describe, were built up.

3. A DISTRIBUTED-MEMORY IMPLEMENTATION: THE IBM SP2

The Aerodynamic Modelization Department at Dassault Aviation possesses a 38-pro-
cessor IBM SP2 with typically from 128 to 256 MBytes of core memory per processor. The
SP2 implements a distributed memory paradigm where the interprocessor communications
are handled by a high-performance IP-switch.

In order to lay out the data over the processors, the computational domain is partitioned
into blocks, each block being affected to a single processor. Blocks are constructed in such
a way to balance the number of elements among blocks and to minimize the size of the
interface between blocks. The data structure which describes the interface was carefully
designed in order to make communications both effective and easy on the programmer.
It gives for each block the numbers of blocks which share its interface and, for each of the
neighboring block, a list of the nodes along the interface. An important fact is that the
order of the nodes in the interface description be the same for two adjacent blocks: this
make the exchange of messages transparent with respect to the node numbering local to
each block.

Figure 2 shows a typical interface between three two-dimensional blocks made of tri-
angles. One can notice that the node numberings are completely independent from each
other. In particular, the node numbers along the interface do not need to (and in fact
cannot) be the same from one block to the next: the correspondence is taken care of by
the interface description arrays.

123

5

756

27

78

241

125

312

241

732

27

38

1212

852

242

243

240

123

27

28

29

122

125

819
823

256

277

78

79

Figure 2. Typical interface between
several blocks.

Each processor only sees the piece of the global domain attached to its block. The
residual evaluation is performed as in the one-block case, except that the element residuals

7

must be assembled across the interfaces. The additional assembly operation is performed
by the call to mpassm in the algorithm below:

do 1000 iblk = 1, nelblk

iel = lcblk(iblk)

nvec = lcblk(iblk+1) - iel

call local (ien(iel), v, vl, ndof)

call local (ien(iel), x, xl, nsd)

call getRe (ve, xe, re)

call globad(ien(iel), r, re, ndof)

1000 continue

if (ntask.gt.1) then

call mpassm(r, ndof, intfbn, intfnn)

end if

As can be seen easily, the call to mpassm if ntask > 1 (one task is associated with every
processor) is the single difference with the scalar code presented in the preceding section.
The routine mpassm uses the list of block numbers sharing nodes in the interface (intfbn)
and the list of the interface nodes themselves (intfnn). It initializes the reception of
incoming messages from all neighboring blocks, gathers the values of the residual on each
interface into an outgoing message, sends the outgoing message to the neighboring blocks,
and then finally receive the incoming messages and assemble them back to the residual.
The send/receive instructions can be performed either by native IBM calls or by MPI
primitives.

The extra assembly operation across the block interfaces in the main alteration to the
scalar code. GMRES needs a few global scalar product evaluations which are performed
separately on each processor using a mask for the interface nodes and then summed over
all the processors.

A typical speed-up of 15 can be obtained with 16 processors, which yields a performance
in the 500 MFLOPS range.

4. A SHARED-MEMORY IMPLEMENTATION: THE NEC SX-4

NLR’s NEC SX-4 is a single-node model composed of 16 processors, which share a main
memory unit of 4 GBytes. The theoretical peak vector performance of each processor is
2 GFLOPS.

The idea behind the SX-4 port was to keep the alterations to VIRGINIE at their mini-
mum and to use a code as close as possible to the SP2 version. At first, we expected to be
able to use the SP2 version as is, but unfortunately the message passing library MPI/SX
was not available at the time of the port. We had then to consider the concept of mul-
titasking as proposed by NEC. FORTRAN 77/SX provides two options: macrotasking
and microtasking. Macrotasking concerns the parallelization of large units on a top-down
basis, whereas microtasking deals with the parallelization of loop iterations and statement
groups. At first, microtasking seemed too cumbersome, having to treat loops one by one
and to decide which would parallelize and which would not. Macrotasking might have
been the solution, since we wanted to parallelize large chunks of code at the top level

8

instead of deep down at the loop level. In fact, as we understand it now, macrotasking
enables to fork the parent process at some point and to execute child processes on differ-
ent other processors: this corresponds more or less to the implementation of an MIMD
programming model. In contrast, microtasking “à la NEC” permits, with the insertion
of directives, the parallelization of loops that may even contain subroutine calls. This is
indeed what we need: if we can parallelize a loop high enough in the subroutine structure,
then we are guaranteed to keep the changes to the code minimal. The only delicate point
is to make sure that there exits no data dependency between processors which may lead
to “critical section” if detected or to unpredictable results if unnoticed.

The candidate loop is the loop over the colored element blocks described earlier. Here
is how we modified it to parallelize on the NEC SX-4:

do 1000 iblk = 1, nelblk

ielc = lcblk(iblk)

ielend = lcblk(iblk+1)

*pdir pardo

do 1001 iel = ielc, ielend - 1, lvec

nvecp = min(lvec,ielend-iel)

call localp (ien(iel), v, ve, ndof,

& nvecp)

call localp (ien(iel), x, xe, nsd,

& nvecp)

call getRep (ve, xe, re, nvecp)

call globadp(ien(iel), r, re, ndof,

& nvecp)

1001 continue

1000 continue

The first thing to note is that the blocks were made artificially longer to allow for
vectorization and parallelization. In practice the blocks are constructed with nproc*lvec

(instead of lvec) unconnected elements, where nproc is the number of processors. Then,
thanks to the pardo directive, loop 1001 will distribute sub-blocks of lvec elements on
each processor for the usual residual evaluation. The only difference is the following: the
actual vector length nvecp is passed to the subroutines localp, getRep, and globadp

as an argument instead of through a common block as before; this makes sure that each
processor has its own copy of nvecp. A few other declarations had to be moved out of
common blocks to make them local to each processor.

Practically, VIRGINIE reaches 800 MFLOPS on one processor, which is quite satisfactory
for an unstructured code, and over 10 GFLOPS on 16 processors. In fact the code could
be much more finely tuned. For instance smaller loops (e.g., array clearing, . . .) could be
made parallel. Loop 1001 could also better balance the load over the processors in the
case of uncompletely filled colors: in the present implementation all processors but one
work with lvec elements.

Nevertheless, we satisfied our requirement to modify the source code as lightly as pos-
sible. Although much different in principle than the SP2 version, the port onto the NEC

9

SX-4 turned out much simpler than anticipated and close to the familiar concept of vec-
torization.

5. NUMERICAL EXAMPLES

Parallel computations are performed on a daily basis in the Aerodynamic Modelization
Department at Dassault Aviation. A few civil and military applications are presented in
the invited paper authored by Ph. Thomas [9]. We will focus on two spatial examples,
for which the calculations were carried out on parallel computers. The first one is a
rebuilding of the American Orbiter using an idealized shape called “Halis.” The second
one concerns the transonic assessment of a Crew Rescue/Crew Transfer Vehicle. These
two computations were performed respectively on the IBM SP2 and the NEC SX-4 using
the techniques described in the previous sections.

5.1. Halis
The Halis geometry consists of a 1:90 scale-down model of the US Orbiter windward

side with an idealized leeward side. It was tested in the high-enthalpy wind tunnel F4
with a 15◦ body flap deflection. The free-stream conditions correspond to a 4930 m/s
flow in thermochemical equilibrium at a static temperature of 795 K. Thermochemical
nonequilibrium effects are present and a separated region develops over the body flap.

The idea behind the strategy which was applied to this computation, was to restrict the
use of a Navier-Stokes code to the sole region where strong viscous interactions appear;
i.e., the aft part of the windward side in the vicinity of the deflected bodyflap. Thus,
a nonequilibium Euler computation was performed on the half geometry, followed by a
defect boundary layer computation. In the case of a thick viscous layer which interacts
with the shock layer, the defect boundary layer approach yields smooth profiles that
perfectly match the inviscid solution away from the boundary layer. The Navier-Stokes
computation is restricted to a “box” which comprises the bodyflap area. This box, which
is depicted in Figure 3, is fed at the inflow with the Euler + boundary layer profiles.

X
Y

Z

with deflected bodyflap

symmetry plane

entry plane

slip planes
Orbiter windward side

Figure 3. HALIS: partial view of the mesh of the Navier-Stokes box.

10

The base flow was not computed and splip planes were introduced instead in the wake of
the main body.

The nonequilibrium extension of VIRGINIE, called AETHER, was used for this calculation.
It is based on the very same numerical ingredients (finite elements, entropy variables,
Galerkin/least-squares, GMRES, . . .) and is more extensively described in [1].

Through pressure-coefficient contours, a view of the solution is shown in Figure 4.

X
Y

Z

separated area

shock induced
by flap deflection detached bow shock

Figure 4. HALIS: pressure coefficient contours.

The trace of the detached bow shock can be seen in the entry plane; it enteracts henceforth
with the shock induced by the flap deflection. One can also notice the pressure plateau in
the separated area along the hinge of the bodyflap. By comparison with the experiment,
the extent of the separation could be accurately reproduced, as well as pressure and heat
flux levels. This computation could be performed using 16 SP2 processors in about 40
hours, on a mesh which contained slightly over 200,000 grid points.

5.2. CRV/CTV
Intensive parallel computing was used during the design process of the Crew Res-

cue/Crew Transfer Vehicle. Starting with the X-24, the final shape has been selected
by NASA for its Crew Rescue Vehicle, and may as well serve as the basis for the future
European Crew Transfer Vehicle. The transonic optimization of such a spacecraft re-
quired numerous detailed computations of the complex flow between the main body and
the winglets. Thanks to the NEC SX-4 installed at NLR, key ingredients to the design,
such as multi-point lift-versus-drag and pitching-moment-versus-angle-of-attack curves,
could be computed overnight. Eight processors were used routinely on meshes made up
of about 220,000 nodes for symmetric configurations. The reader is referred to [2] for
further details about the design of the CRV/CTV.

For the purpose of illustration, we have selected an unsymmetrical configuration past
one of the many spacecraft shapes which were considered in the design iteration process:
the free-stream Mach number is 0.95, the angle of attack 20◦, and the side-slip angle 5◦. A

11

view of the surface mesh is presented in Figure 5. The complete three-dimensional mesh
contains about 500,000 nodes.

Figure 5. CRV/CTV: surface mesh.

Figure 6 shows the pressure-coefficient contours on the surface of the CRV/CTV; it
gives an idea of the complex flow pattern which surrounds the vehicle.

Figure 6. CRV/CTV: pressure coefficient contours.

Finally, we present in Figure 7 a summary of the speed-up which could be achieved
on the NEC SX-4. This data is extracted from a typical run of VIRGINIE among the
many computations which took place during the CRV/CTV design project. The slight
drop in efficiency for 10 processors and above, can be explained in two ways: first, the

12

SX-4 at NLR is shared between users; this could account for the lower efficiency when one
calculation requires more than half the total number of processors of the machine. The
second reason might be that the considered problem is too small to run efficiently on 10
processors. Nevertheless, the shape of the curve fits reasonably well the theoretical curve
obtained assuming a parallel work fraction of 0.945.

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12

sp
ee

d-
up

of SX-4 processors

ideal
theoretical

actual

Figure 7. Overall run-time speed-up on the NEC SX-4.

6. CONCLUDING REMARKS AND PERSPECTIVE

We have presented two parallel ports of the same vectorized finite-element Navier-Stokes
code onto two different parallel architectures, the IBM SP2 and the NEC SX-4.

The SP2 is conceptually simpler since it implements a paradigm close to the idea of
a finite element method. The unique drawback is that more effort must be deployed in
order to split every new mesh into blocks. The ease of use of the technique could be
improved in several ways: parallel mesh generation methods would avoid the splitting
process all together; alternatively, the splitting algorithm could be introduced directly in
the Navier-Stokes code, hence rendering parallelism truly transparent to the user.

The SX-4 may feel a little weird at first, but in fact turns out not so complex to
work with, since within its microtasking environment parallelization is very similar to
vectorization.

We have shown that an appropriately designed finite-element Navier-Stokes code can
efficiently be ported on shared- or distributed-memory computers. The distinction be-
tween these two memory representations may soon become irrelevant due to the progress
in operating systems and network speeds. One may dream of a system which would en-
able a programmer to use in a transparent fashion any combination of computing power
and memory resources of machines distributed over a network and see it as a single com-
puter. The idea of the “mainframe” might be definitely obsolete with the occurrence of

13

memory-less processing units and processor-less memory units which could be mixed to
assemble a “couture” computer tailored to one’s needs. We may not be that far from the
time when, say, a European engineer would be able to run a computation on processors
that may reside somewhere in America using a hudge amount of memory spread across
different countries in Asia, or vice versa?. . .

7. ACKNOWLEDGEMENTS

The authors would like to thank the Nationaal Lucht- en Ruimtevaartlaboratorium
(NLR) in Amsterdam, The Netherlands, for providing access to their NEC SX-4. They
are particularly grateful towards B. Oskam, K. de Cock, and J.J.W. van der Vegt from
NLR, and G.A. van der Velde from NEC Netherlands for fruitful discussions.

The Halis and CRV/CTV applications were sponsored by ESA respectively under the
MSTP and CRV/CTV programs.

REFERENCES

1. F. Chalot, M. Mallet, and M. Ravachol, “A comprehensive finite element
Navier-Stokes solver for low- and high-speed aircraft design,” paper #94-0814, AIAA

32nd Aerospace Sciences Meeting, Reno, NV, January 10–13, 1994.
2. F. Chalot, J.M. Hasholder, M. Mallet, A. Näım, P. Perrier, M. Rava-

chol, Ph. Rostand, B. Stoufflet, B. Oskam, R. Hagmeijer, and K. de

Cock, “Ground to flight transposition of the transonic characteristics of a proposed
Crew Rescue/Crew Transfer Vehicle,” paper #97-2305, 15th AIAA Applied Aerody-

namics Conference, Atlanta, GA, June 23–25, 1997.
3. Q.V. Dinh and T. Fanion, “Applications of dual Schur complement preconditioning

to problems in Computational Fluid Dynamics and computational electromagnetics,”
DD9 Conference, Bergen, Norway, June 3–8, 1996.

4. R. Hagmeijer, B. Oskam, K.M.J de Cock, P. Perrier, Ph. Rostand,

J.M. Hasholder, and J.W. Wegereef, “Validation of the design of the com-
putational methods used for the design of the canopy of the Hermes spaceplane,”
paper #94-1865, AIAA 12th Applied Aerodynamics Conference, Colorado Springs,
CO, June 20–22, 1994.

5. Z. Johan, T.J.R. Hughes, and F. Shakib, “A globally convergent matrix-free
algorithm for implicit time-marching schemes arising in finite element analysis in
fluids,” Computer Methods in Applied Mechanics and Engineering, Vol. 87, pp 281–
304, 1991.

6. Z. Johan, Data Parallel Finite Element Techniques for Large-scale Computational

Fluid Dynamics, Ph.D. Thesis, Stanford University, 1992.
7. F. Shakib, T.J.R. Hughes, and Z. Johan, “A multi-element group precondi-

tioned GMRES algorithm for nonsymmetric systems arising in finite element analy-
sis,” Computer Methods in Applied Mechanics and Engineering, Vol. 75, pp 415–456,
1989.

8. F. Shakib, T.J.R. Hughes, and Z. Johan, “A new finite element formulation for
computational fluid dynamics: X. The compressible Euler and Navier-Stokes equa-

14

tions,” Computer Methods in Applied Mechanics and Engineering, Vol. 89, pp 141–219,
1991.

9. Ph. Thomas, “Usage of parallel computing in aeronautics,” Parallel CFD ‘97,
Manchester, UK, May 19–21, 1997.

10. “Grand Challenges: High performance computing and communications. The FY 1992
US research and development program,” Report by the Committee on Physical, Math-
ematical, and Engineering Sciences; Federal Coordinating Council for Science, Engi-
neering and Technology; Office of Science and Technology Policy.

11. IBM AIX Parallel Environment: Parallel Programming Subroutine Reference, Release
2.1, Second Edition, December 1994.

