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Abstract

The variational multiscale approach for large-eddy simulation is investigated within a finite element framework. A

filtering analog of this method, providing a model, which shares basic structures with hyperviscosity models, is used and

evaluated on a freely decaying isotropic turbulence in the limit of infinite Reynolds numbers. The method used is based

on a symmetric form of the Navier–Stokes equations stabilized with a Galerkin/least-squares approach. The proposed

procedure provides appealing results. It is as satisfactory as the use of Germano and Lilly�s dynamic algorithm, without

stabilization flaws, and at a lower cost. Comparisons between numerical dissipation and the proper subgrid closure

show that the variational multiscale models tend to compute a turbulent viscosity that accounts for the numerical

sources of dissipation, which reveals an important feature for an intensive and robust use of VMS-large-eddy

simulation.

� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Large-eddy simulation has proven to be a valuable technique for simulating turbulent flows, but most
LES research is concentrated on incompressible or subsonic flows computed on structured meshes. First

steps on unstructured grids have been made by Jansen [1] while simulating the flow over a NACA 4412
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airfoil. Chalot et al. [2] proposed a consistent finite element approach to LES, applied to the decay of iso-

tropic turbulence and a mixing layer. Important development has also been made by Knight et al. [3],

whose algorithm has been first tested on decaying isotropic turbulence. Okong�o and Knight [4] and Urbin

et al. [5,6] applied it with success to channel flows, boundary layers, and compression corners. Simons and

Pletcher [7] compared the results obtained between hexahedral or tetrahedral grids on a decaying isotropic
turbulence with different subgrid models, namely MILES, Smagorinsky, and dynamic model.

Besides, to define general methods for closing the LES equations, aiming at a subgrid model able to ac-

count for a wide range of subgrid dynamics, multilevel/multiscale approaches have been investigated by

many authors. The variational multiscale approach formulated by Hughes et al. [8–11], can be seen as a

particular case of two-band decomposition methods. The original key idea is to reconstruct a part of the

subgrid modes and to use it as an estimation of the whole subgrid tensor. The subgrid fluctuations being

reconstructed on a finer grid than the classical LES grid, there is a priori no restriction on the anisotropy

or non-equilibrium of the small scales. Actually, in practice, the same cut-off length is used for the VMS
closures as for the classical ones. Thus, the main difference between both modelizations is a change of

the dependence of the subgrid dissipation function of the resolved scales on the one hand, and its extent,

which is reduced in the case of VMS, on the other hand. This method was shown to yield satisfactory results

at low to medium Reynolds numbers in the case of isotropic turbulence and channel flows [10,11]. Holmen

et al. [12] reported a high sensitivity of the model with respect to the auxiliary cutoff wavenumber, decreased

by the use of a dynamic closure based on Germano and Lilly�s procedure. Sagaut and Levasseur observed a

spurious pile-up of the resolved kinetic energy when computing isotropic turbulence at high Reynolds num-

bers in the spectral space [13]. The authors mainly attributed this flaw to the fact that when an orthogonal
operator is used to separate large scales from resolved small ones, the distant triadic interactions are ne-

glected. The use of a non-orthogonal filter is advocated to cure this effect by inducing a frequency overlap

between the two parts of the resolved flowfield and some direct influence of the closure upon the largest

scales. It provides then a model which shares basic features with hyperviscosity models [14].

The present paper aims at investigating this hyperviscosity formulation of the VMS approach in physical

space. Koobus and Farhat [15] obtained good results with the original VMS method, with a cell agglom-

eration technique to separate scales, successfully applied to the flow past a square cylinder on unstructured

meshes, showing its viability and possible extension. Another suitable VMS discretization is proposed by
Jansen and Tejada-Martinez [16] by the use of a low order hierarchical polynomial expansion basis, and

has been applied to decaying isotropic turbulence. A VMS/Galerkin/least-squares method is presented here

based on the symmetrized Navier–Stokes equations introduced by Hughes et al. [17], for the simulation

of compressible flows on unstructured meshes. The decaying isotropic turbulence in the limit of infinite

Reynolds numbers is retained as a test case.

A point of major importance for the development of effective subgrid closures is the coupling between

numerical dissipation, especially stabilization techniques in our case, and the subgrid model itself. Two

main strategies of modelization can be defined, as presented by Sagaut [18]: the explicit modeling, which
consists in adding source terms into the equations to account for the subgrid-scales effects, and the implicit

modeling, which relies on the use of numerical schemes exhibiting errors that play the role of the subgrid

model. The variational multiscale approach as proposed by Hughes et al. [9–11] can be seen as a balance

between these two strategies, since its original formulation is very close to bubble stabilization, and yet it

consists in adding a source term into the evolution equation of the resolved small-scales. It turns out that

this method authorizes a computation of the turbulent dissipation, which takes into account numerical dis-

sipation, thanks to the change of dependency of the subgrid tensor upon the largest scales.

The paper is organized as follows: the equations of turbulent compressible flows in entropy variables and
the Galerkin/least-squares method are described in Section 2. The different LES closures, with emphasis on

the VMS implementation, are detailed in Section 3. The results obtained on a decaying isotropic turbulence

test case are presented in Section 4. Finally, conclusions are drawn in Section 5.
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2. Governing equations

The case of compressible flows is considered here. For non-hypersonic flows, and considering the local

thermodynamic equilibrium hypothesis, the perfect gas relation is supposed to be a proper approximation.

The equations are the Navier–Stokes equations for a Newtonian fluid. The filtered equations for large-eddy
simulation and the assumptions made are presented in Appendix A.

In this section, we will present the main tenets of the semi-discrete Galerkin/least-squares formulation

used for this study. The time integration is carried out using an implicit second order backward difference

scheme and second order piecewise linear elements are used for space discretization. The mathematics has

been done by Mallet [19] for steady problems and Shakib [20] extended it to the unsteady case. The code

used for the study is AETHER, property of Dassault-Aviation (France) and has been mainly developed by

Shakib, Johan and Chalot.

2.1. Symmetrized form of the compressible Navier–Stokes equations

The compressible Navier–Stokes equations are symmetrized using the entropy variables introduced by

Hughes et al. [17].

In conservation form, the equations can be formally written as
U ;t þ Fadv
i;i ¼ Fdiff

i;i ; ð1Þ
with
U ¼ q

1

u1
u2
u3
E

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
; Fadv

i ¼

qui
quiu1 þ pd1i
quiu2 þ pd2i
quiu3 þ pd3i
quiE þ pui

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
; Fdiff

i ¼

0

r1i

r2i

r3i

rijuj � qi

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
; ð2Þ
rij ¼ 2lSijðuÞ ¼ 2l 1
2
ðui;j þ uj;iÞ � 1

3
uk;kdij

� �
is the viscous stress, l = l(T) the molecular viscosity, qi = �jT,i

the heat flux vector, j and T are respectively the heat conductivity and the temperature, and

E ¼ cvT þ 1
2
kuk2 is the specific total energy, with cv the specific heat at constant volume.

It can be rewritten in a quasi-linear form:
U ;t þ AiU ;i ¼ ðK ijU ;jÞ;i; ð3Þ
where Ai ¼ Fadv
i;U is the ith Euler Jacobian matrix, and K = [Kij] is the diffusivity matrix, such that

K ijU ;j ¼ Fdiff
i .

We now introduce the generalized entropy function H defined as
H ¼ HðUÞ ¼ �qs; ð4Þ
with s ¼ cv ln
p
qc

� �
þ so the entropy per unit mass, and c the ratio of specific heats.

Then the use of the change of variables V : U 7!V defined by
V ¼ VðUÞ ¼ oHT

oU
; ð5Þ
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or else, denoting h = cpT the enthalpy per unit mass, with cp the specific heat at constant pressure:
V ¼ 1

qT

�U 5 þ qcvT cþ 1� ðc� 1Þs
r

� �
U 2

U 3

U 4

�U 1

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
¼ 1

T

h� Ts� kuk2

2
u1
u2
u3
�1

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
ð6Þ
gives
 eA0V ;t þ eAiV ;i ¼ ð eK ijV ;jÞ;i; ð7Þ
with
 eA0 ¼ U ;V ; eAi ¼ Ai
eA0; eK ij ¼ K ij

eA0. ð8Þ

All matrices eA0, eAi, eK ¼ ½ eK ij� are symmetric, eA0 is positive-definite, and eK is positive-semidefinite.

Thus, this formulation, Eq. (7), possesses advantageous mathematical properties, used in the numerical

solution of the equations; it also makes physical sense in that the Clausius–Duhem inequality is automat-

ically satisfied (see [17] or [19] for details). eK ij and Kij are both functions of l, j, and U (or V). The expres-

sions of eA0, eAi and eK ij are given in Appendix B.

2.2. LES equations in entropy variables

The large-eddy simulation consists in projecting the DNS solution onto a basis with fewer degrees of

freedom, resulting in a filtering of the small scales. When resolving in entropy variables, two different ap-

proaches are possible: whether filter the conservation equations, and then apply the change of variables V,
or directly solve the problem for the filtered entropy variables. Since V is non-linear these approaches will

not lead to the same systems of equations, although they should be equivalent. The first approach is pre-

ferred because it preserves the same structure of the LES equations in entropy variables as in conservative

variables. In particular, the subgrid terms will be exactly the same.

Using the usual mass-weighted change of variables to filter the conservative variables, let us now define:
bV T
¼ oHðUÞ

oU
; ð9Þ

bA0 ¼ U ;V̂ ; ð10ÞbAi ¼ Ai
bA0; ð11ÞbK ij ¼ K ij
bA0; ð12Þ
where
U ¼

�q

qu1
qu2
qu3
qE

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼ �q

1

~u1
~u2
~u3eE

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
is the filtered counterpart of U . ð13Þ
Note that here, bV is not the low frequency part of V: bV ¼ oHðUÞ
oU

6¼ V ¼ oHðUÞ
oU

.
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The following relationships are then satisfied:
~ui ¼ qui=q ¼ �
bV iþ1bV 5

; ð14Þ

eT ¼ qT=q ¼ � 1bV 5

; ð15Þ
and
bV ¼ 1

�qeT
�U 5 þ �qcveT cþ 1� ðc� 1Þ~s

r

� �
U 2

U 3

U 4

�U 1

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
¼ 1eT

~h� eT~s� k~uk2

2
~u1
~u2
~u3
�1

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
; ð16Þ
where ~ui and eT are respectively the filtered velocity and the filtered temperature fields.

Then filtering Eq. (3) gives
U ;t þ AiU ;i ¼ K ijU ;j

� �
;i
. ð17Þ
Assuming that the filtering operation commutes with time and space derivatives, one can write
U ;t þ AiU ;i ¼ K ijU ;j

� �
;i
� AiU ;i � AiU ;i

� �
þ K ijU ;j � K ijU ;j

� �
;i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

subgrid terms

. ð18Þ
Henceforth, introducing the entropy variables bV :
bA0
bV ;t þ bAi

bV ;i ¼ ð bK ij
bV ;jÞ;i � AiU ;i � AiU ;i

� �
þ K ijU ;j � K ijU ;j

� �
;i

ð19Þ

¼ ð bK ij
bV ;jÞ;i �ðeAiV ;i � bAi

bV ;iÞ þ ð eK ijV ;j � bK ij
bV ;jÞ;i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

subgrid terms

. ð20Þ
The subgrid terms represent the effect of the unresolved scales on the filtered flowfield, and are not di-

rectly computable. Following the results of Vreman et al. [21] within the context of a priori tests on DNS of

a temporal mixing layer, the non-linearity associated with viscous stress and heat flux, namely the diffusive

fluxes ðK ijU ;jÞ;i � ðK ijU ;jÞ;i in Eq. (19), are assumed negligible. Eventually, within the assumptions detailed

in Appendix A, the remaining subgrid terms are modeled as a diffusive term and the LES equation system

written in entropy variables becomes,
bA0
bV ;t þ bAi

bV ;i ¼ ð bK ij þ bK SGS

ij Þ bV ;j

� �
;i
; ð21Þ
where
bK SGS

ij ¼ bK ijðlt; jt; bU Þ; ð22Þ
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so that the large-eddy simulation consists in adding a source term that is the exact diffusive contribution,

except that l and j are substituted with their turbulent analog lt and jt.
2.3. The Galerkin/least-squares formulation

Considering a domain X, and its boundary C, discretized with nel elements Xe, the semi-discrete Galer-

kin/least-squares formulation of Eq. (21) reads,
Z
X

Wh � bA0
bV h

;t �Wh
;i � bF adv

i ð bV h
Þ þWh

;i � ð bK ij þ bK SGS

ij Þ � bV h

;j

� �
dX

þ
Z
C

Wh � bF iðbV hÞ � ð bK ij þ bK T

ijÞV
h
;j

� �� �
ni dC

þ
Xnel
e¼1

Z
Xe

LðWhÞs bA0
bV h

;t þLð bV h
Þ

� �
dXe ¼ 0; ð23Þ
with Lð bV Þ ¼ bA i
obV
oxi

� o
oxi

ð bK ij þ bK SGS

ij Þ obV
oxj

� �
the steady compressible Navier–Stokes operator, W a test

function, and s a characteristic time-scale matrix.

It is well known that the least-squares stabilization, when applied to a steady scalar advection–diffusion

equation, is equivalent to the adjunction of an artificial viscosity, jnum = sjuj2 = f(Pe)jujh/2, where f(Pe) is a
function of the Peclet number jujh/2j which controls the stability of advection-dominated zones of the flow.

This has been generalized for the Navier–Stokes equations so that the added numerical viscosity vanishes

when the Peclet number is low. A similar mechanism is incorporated in the definition of the s matrix. For

unsteady cases, the term bA0
bV h

;t has been added to the residual to be consistent and to enable the residual to

vanish to 0, as the solution converges, but the chosen test function remains LðWhÞ as in steady case. The

formulation turns out to be much more dissipative otherwise.

Note that when using piecewise linear elements, the second-order derivative terms appearing in the def-

inition of the least-squares stabilization have zero value. However, it is possible to easily reconstruct them

in order to improve the consistency of the formulation (see [22] for details). Such a reconstruction algorithm

has been implemented in the code but it does not bring any improvement in the case of a freely evolving
isotropic turbulence at high Reynolds number.
2.3.1. Definition of the characteristic time-scale matrix s

The structure of the s matrix is a major point of this Galerkin/least-squares formulation. Studies of sim-

ple one-dimensional problems, linear error estimates, dimensional analysis and convergence proofs provide

a few conditions to satisfy for the design of s, but are not sufficient to define a unique characteristic time-

scale matrix. Mallet et al. [23,19] give a general structure of s for the steady Navier–Stokes equations, and

Shakib [20] extended it to the unsteady case.
The s matrix is decomposed into an advective part and a diffusive correction. Shakib proposed the fol-

lowing definition for the advective part:
sadv ¼ eA�1

0

on0
ox0

� �2

1ndof þ
oni
oxj

oni
oxk

� �
AjAk

" #�1=2

; ð24Þ
where ndof is the number of degrees of freedom, and n0 and ni denote the local space-time coordinates, the

index 0 being related to time ‘‘direction’’.
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We will refer to the above references for further details about the definition and properties of the char-

acteristic time scale matrix s.
3. Subgrid closures

3.1. Smagorinsky model

Following Kolmogorov�s dimensional analysis (1941) a characteristic time for turbulence can be written

as T = (D2/e)1/3, where e is the energy transfer rate within the inertial range, and D is the size of the smallest

resolved scale. Thus, the turbulent viscosity is expressed as
mt / e1=3D4=3. ð25Þ

The reader is referred to Pope [24], for instance, for further details on Kolmogorov�s work.
Smagorinsky [25] proposed then a local equilibrium hypothesis, which implies that the energy transfer

rate is equal to the subgrid dissipation. The eddy viscosity appears thus as a function of the resolved veloc-

ity field:
mt ¼ ðCSDÞ2jSð~uÞj ¼ ðCSDÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sijð~uÞSijð~uÞ

q
. ð26Þ
A way to alleviate the classic shortcomings of the Smagorinsky model, mainly an overdissipative behav-
ior, is the use of the Germano procedure which enables the adaptation of the turbulent viscosity to the local

property of the flow by computing a time- and space-dependent Smagorinsky constant [26]. This procedure

can be applied to any subgrid model that relies on the use of a constant. When applied to the Smagorinsky

closure, the resulting model is historically referred to as the dynamic model.

3.2. The variational multiscale approach

The Smagorinsky model is known to yield good results in isotropic turbulence. However, it turns out to
be inadequate to non-homogeneous flows because it assumes that ensuring the correct balance of resolved

kinetic energy is enough to account for the effect of unresolved scales on the large structures. The Germano

and Lilly�s dynamic procedure alleviates this difficulty but introduces instabilities only resolved by averag-

ing in homogeneous directions. This is the major drawback of this technique, which renders its use really

problematic on unstructured meshes.

Instead of adapting the constant of the Smagorinsky model, an alternative could be to change the depen-

dence of the model upon the resolved scales. Thus, to define a more general model, Hughes et al. [9–11]

proposed to rebuild a part of the subgrid modes and to use these reconstructed modes as an estimation
for the whole subgrid motion. The original formulation relies on two key hypotheses:

• An a priori variational projection is used to differentiate the resolved scales;

• The resolved large scales and the subgrid scales are supposed distant enough so that they do not directly

interact.

A schematic view of the scale separation is presented on Fig. 1 by the way of a spectral cut-off. The wave-

number k0c is associated with the mesh size D, and kc corresponds to D00 which is a characteristic length of the
resolved scales separation. The choice of a correct D00 is further discussed at the end of the section. uR rep-

resents the total resolved velocity field, decomposed into eu and u00 respectively the low- and high-frequency

parts. u0 ¼ u� eu corresponds to the fluctuation part associated with the primary LES cut-off kc. Remember

that the filtered velocity field eu is associated with the filtered conservative-variable vector U via Favre aver-

aging, Eq. (13).



Fig. 1. Schematic view of the variational multiscale approach on a kinetic energy spectrum.
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For compressible flows, the vectors associated with the conservative variables verify the relations:

U ¼ U þU 0, UR ¼ U þU 00, and U00 = (UR) 0. A precise definition of how to differentiate the total resolved

scales from UR into U and U00 is proposed in the following (see Eq. (43)). Let us introduce now the entropy

variables counterparts: bV ¼ VðUÞ, V 0 ¼ VðU 0Þ, V 00 ¼ VðU 00Þ, VR ¼ VðURÞ.
To ease the notations, similar exponents (prime, double prime and R) are used for conservative or en-

tropy variables, though they do not have the same meaning, as it was underlined above.

We describe below the original formulation of the VMS/LES within a filtering framework. By these

means, the problem can be handled by the solution of a unique equation for VR instead of two different

equations in the original VMS, respectively for large- and small-scale motions bV and V00. Moreover, it en-

ables not to increase the number of degrees of freedom of the problem. Vreman [27] detailed it in the case of

incompressible fluids, and it is generalized here for compressible flows in entropy variables.

First of all, the total resolved field VR satisfies the following equation:
AR
0 V

R
;t þ AR

i V
R
;i ¼ KR

ijV
R
;j

� �
;i
� ðeAiV ;iÞR � AR

i V
R
;i

� �
þ ð eK ijV ;jÞR � KR

ijV
R
;j

� �
. ð27Þ
We will note ss ¼ ðeAiV ;iÞR � AR
i V

R
;i

� �
� ð eK ijV ;jÞR � KR

ijV
R
;j

� �
the subgrid term corresponding to this

finest level of filtering.

The equation for the largest scales of motion is
bA0
bV ;t þ bA i

bV ;i ¼ ð bK ij
bV ;jÞ;i � ðeAiV ;i � bAi

bV ;iÞ þ ð eK ijV ;j � bK ij
bV ;jÞ;i. ð28Þ
The subgrid terms in Eq. (28), noted Ts, can be divided into two parts:
Ts ¼ ðeAiV ;i � bA i
bV ;iÞ � ð eK ijV ;j � bK ij

bV ;jÞ;i ¼ bB1ð bV ;VRÞ þ bB2ðV ;VRÞ; ð29Þ
where
bB1ð bV ;VRÞ ¼ ðAR
i V

R
;i � bAi

bV ;iÞ � ðKR
ijV

R
;j � bK ij

bV ;jÞ;i; ð30ÞbB2ðV ;VRÞ ¼ ðeAiV ;i � AR
i V

R
;i Þ � ð eK ijV ;j � KR

ijV
R
;j Þ;i ¼ bss. ð31Þ
bB1 and bB2 represent the effects on the large-scale motion respectively of the resolved small scales (modes

k 2 ½kc; k0c� on Fig. 1) and the subgrid scales (modes k P k0c).
In the same way, the equation for the resolved small scales writes:
A00
0V

00
;t þ A00

i V
00
;i ¼ ðK 00

ijV
00
;jÞ;i �B00

1ðV 00;VRÞ �B00
2ðV ;VRÞ; ð32Þ
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where
B00
1ðV

00;VRÞ ¼ ðAR
i V

R
;i Þ

0 � A00
i V

00
;i

� �
� ðKR

ijV
R
;j Þ

0 � K 00
ijV

00
;j

� �
;i
; ð33Þ

B00
2ðV ;VRÞ ¼ ðeA iV ;iÞ00 � ðAR

i V
R
;i Þ

0
� �

� ð eK ijV ;jÞ00 � ðKR
ijV

R
;j Þ

0
� �

;i
¼ s00s . ð34Þ
B00
1 and B00

2 represent the interactions of the resolved small scales respectively with the smallest frequencies

and the subgrid modes.

The key idea for the VMS modelization is to neglect the distant kinetic energy transfers involving the

large scales and the subgrid scales, namely to neglect bB2 ¼ bss. Therefore, when summing Eqs. (28) and

(32), we find the evolution equation of the total resolved field in entropy variables:
AR
0 V

R
;t þ AR

i V
R
;i ¼ ðKR

ijV
R
;j Þ;i �B00

2ðV ;VRÞ. ð35Þ
B00
2 remains unresolved, and needs therefore to be modeled. In conservative variables, the effect of the sub-

grid scales on the resolved small scales is accounted for in the momentum equations by analogy with the

usual turbulent viscosity hypothesis:
s00sij �
1
3
s00skkdij ¼ �2ltSijðu00Þ; ð36Þ
where s00sij;j ¼ B00
2ciþ1 (e.g., the (i + 1)th component of B00

2) for i = 1,3 are the subgrid terms in the momentum
equations and the two eddy-viscosities studied in the paper are Smagorinsky-like models:
mt ¼ ðC1DÞ2jSðu00Þj ð37Þ

and
mt ¼ ðC2DÞ2jSðeuÞj; ð38Þ

where D � p=k0c is the mesh size.

The two models defined by Eqs. (37) and (38) are referred to as the Small–Small and the Large–Small

model. Note that the eddy-viscosity mt = (CD)2jS(uR)j has also been tested but the results obtained with this

closure are not presented here. It turns out to be a little too dissipative and it should probably incorporate a

dynamic algorithm such as Holmen et al. do [12].

The same modelization as the classical LES is kept for the turbulent heat flux by introducing a turbulent

heat conductivity such that: jt = ccvlt/Prt, with Prt is the turbulent Prandtl number set equal to 0.9.

As a result, the equation of the filtering multiscale LES in entropy variables writes:
AR
0 V

R
;t þ AR

i V
R
i ¼ KR

ijV
R
;j

� �
;i
þ ðKVMS

ij VVMS
;j Þ;i; ð39Þ
where KVMS
ij ¼ K ijðlt; jt; u

00; TRÞ, and
VVMS ¼ 1

TR

TRV R
1

~u001
~u002
~u003
�1

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
. ð40Þ
Sagaut and Levasseur [13] reported a spurious kinetic-energy pile-up in the case of incompressible freely

evolving isotropic turbulence in the limit of an infinite Reynolds number. The use of a non-orthogonal

operator was proved to cure this problem by making all the scales sensitive to the subgrid closure. Using

a second-order Taylor expansion for the Gaussian filter, the reconstructed modes of the velocity field can be
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written as: u00 ¼ � D00

24
r2uR, with D00 � p/kc a characteristic length of the resolved scales separation. The

choice of D00 will be further discussed in the following. The variational multiscale modelization for the sub-

grid stress thus becomes:
Fig. 2.
s ¼ �2ltSðu00Þ ¼ �2�qC1D
2jSðu00ÞjSðu00Þ ¼ �2�qC0

1D
6jSðr2uRÞjSðr2uRÞ Small–Small; ð41Þ

s ¼ �2ltSðu00Þ ¼ �2�qC2D
2jSðeuÞjSðu00Þ ¼ �2�qC0

2D
4jSðeuÞjSðr2uRÞ Large–Small. ð42Þ
Practically, the small scales velocity field u00 is computed thanks to an integration by part similar to that

of the viscous terms. Thus, one can obtain
u00A ¼ D002

24
MAA�1

X
B

Z
X
NA;iNB;i dX�

Z
C
NANB;i ni dC

� �
uRB ; ð43Þ
whereMAA is the special lumped mass matrix advocated by Hughes [28], and defined for its elementary part

as
MABL

e ¼

Z
Xe

N 2
A dXeXn

C¼1

Z
Xe

N 2
C dXe

� V e if A ¼ B;

0 otherwise;

8>>>>><>>>>>:
ð44Þ
n being the number of nodes in the element Xe, and Nt the shape functions.

The question of the scale partition for the VMS methods has been investigated by Holmen et al. [12]

through simulations of channel flows. The minimum error regarding the mean velocity profile and the

velocity fluctuations is obtained for N=N 0 partitions in the 0.6–0.7 range, with the authors� notations.

The fraction of modes in the large-scale space is then given by: f ¼ ðN�1Þ2ðN�2Þ
ðN 0�1Þ2ðN 0�2Þ (see [11] for details). Hence-

forth, the range of the kc=k
0
c ratio corresponding to Holmen�s studies is approximately 0.2–0.3. This is

coherent with Sagaut and Levasseur [13] findings about the spurious pile-up of the resolved kinetic energy

which tends to decrease as kc decreases for a given k0c since more distant triadic interactions are then ac-

counted for. Furthermore, thanks to the non-orthogonal operator used to separate scales, which enables
Schematic of the unstructured mesh used for the computations of isotropic turbulence: from 1 cube, 6 tetrahedra are obtained.
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a frequency overlap between the two parts of the resolved flowfield, it could be expected that more modes

could be incorporated into the large-scale space, or equivalently a larger kc=k
0
c ratio could be kept.

We choose herein to take for D00 the characteristic length of the macro-element obtained by assembling

all the elements that share a given node. In practice D00 ¼ D00
A is defined as the cube root of the macro-ele-

ment volume associated with the A node. The grid used for the study of a decaying isotropic turbulence is
based on a structured mesh split into tetrahedra (see Fig. 2). Since the computation is periodic in the three

space directions, it can be estimated that every node is shared between 24 different elements. This leads

approximatively to the ratio kc=k
0
c ¼ 0.35. By analogy with Lilly�s approach for the Smagorinsky constant

(see [29]), the constants C1 and C2, which appear in the Small–Small and Large–Small closures can be eval-

uated for a given kc=k
0
c ratio. In our case we obtain: C1 = 0.22 and C2 = 0.29 for a 0.18 value of the Sma-

gorinsky constant. These are the values used in the present study.
4. Results on decaying isotropic turbulence

In this section we present calculations of freely evolving isotropic turbulence carried out on 213, 513 and

813 meshes for infinite Reynolds number. The choice of an extremely coarse grid is justified by the fact that

our formulation aims at being applied to industrial computations and therefore needs to prove its robust-

ness. The simulations are initialized according to the procedure described by Erlebacher et al. [30]. We com-

pare the results obtained with both Small–Small and Large–Small closures with those deriving from the

Smagorinsky model, with a constant set equal to 0.18, and the dynamic Smagorinsky. The choice of this
value of the constant will be discussed in Section 4.2. The turbulent Prandtl number is set constant, equal

to 0.9. A set of calculations without any subgrid model but with the numerical stabilization has first been

computed in order to assess the ability of the Galerkin/least-squares formulation to perform implicit large-

eddy simulation (ILES).
4.1. ILES computations

Analytical and numerical studies show that, in the limit of vanishing viscosity, enstrophy can blow up at
finite time under particular circumstances detailed in [31], and the kinetic energy spectrum follows a k2 rule.

The stabilization technique implemented in the code prevents enstrophy from blowing up, nevertheless a

few other interesting features can be recovered in this case in order to assess our numerical formulation.

Instead of blowing up, the time evolution of enstrophy, D ¼ 1
2
hw2i, exhibits a peak such that

Dmax

Dðt¼0Þ ¼ 16.23 at t = 33.93, in the simulations on the 213 mesh. This value is quite close to the critical time

when enstrophy blows up in the inviscid case: tc = 5.9D(t = 0)�1/2 � 31.01 for a constant skewness factor

equal to 0.4.

Figs. 3 and 4 show the kinetic energy spectra at different times in the computations respectively on 213

and 513 grids. The k2 law is quite well recovered by the 213 calculation, but numerics seems to be much

more dissipative when computing on the finest grid. Indeed, the characteristic time-scale matrix s tends

to 0 as the characteristic length scale of the grid D, and the time step Dt, but the fine grid enables to account

for smaller scales. Consequently, the computed gradients have higher values, and the global term represent-
ing the stabilization, namely bAiW ;isbAj

bV ;j, is higher as well.

Nevertheless, whatever the grid, the Kolmogorov k�5/3 law for the energy spectrum is not recovered by

these calculations, so that the least-squares stabilization cannot be considered as a proper subgrid model.

Therefore, it is unable to perform ILES or what has been called implicit modeling in the introduction

section. In the following, the least-squares dissipation will only be considered as a part of the numerical

method and not of the subgrid model.
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Fig. 4. Resolved kinetic energy spectra at different time of computation on a 513 grid with no subgrid model. Straight line indicates a

�1 slope.

0.0001

0.001

0.01

1 10

E
(k

)

k

Fig. 3. Resolved kinetic energy spectra at different time of computation on a 213 grid with no subgrid model. Straight line indicates a

2 slope.
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4.2. Analysis of the VMS closures

The Galerkin/least-squares formulation being not dissipative enough to behave as a subgrid model, the

effect of the variational multiscale closures is now investigated. The comparison is done against the Sma-

gorinsky and the dynamic models. Figs. 5 and 6 present the kinetic energy spectra obtained for the different
closures at the last step in the simulations. For both grids, the Smagorinsky model reveals an overdissipa-

tive behavior for large wavenumbers, i.e., the smallest structures. On the contrary, the dynamic procedure,

applied to the same model, correctly accounts for the energy transfers in the whole inertial range. It takes

into account the numerical dissipation and computes the right turbulent viscosity. The Kolmogorov law in

the inertial range, E(k) = CKe
2/3k�5/3 is then well reproduced. This is coherent with the time history of the

pseudo constant Cd computed by the dynamic procedure, as shown in Fig. 7. The constant stabilizes around

0.1, compared with the 0.18 theoretical value of the Smagorinsky constant. The difference represents the

ability of the dynamic procedure to substract from the subgrid model part of the numerical dissipation.
Besides, the asymptotic value of the dynamic constant is lower on the fine grid than on the coarse one,



Fig. 6. Turbulent kinetic energy spectra on a 513 grid. The subgrid models are Smagorinsky, dynamic, Small–Small and Large–Small.

Straight line indicates a �5/3 slope.
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Fig. 7. Time history of the dynamic constant Cd—Fine mesh: 513; Coarse mesh: 213.

Fig. 5. Turbulent kinetic energy spectra on a 213 grid. The subgrid models are Smagorinsky, dynamic, Small–Small and Large–Small.

Straight line indicates a �5/3 slope.
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confirming the results of the ILES computations and the fact that the stabilization induces a higher dissi-

pation rate on the finest grid. With this result, we could assume that a Smagorinsky closure with a constant

set equal to 0.1 would recover a k�5/3 energy spectrum shape. Nonetheless, the value of the constant CS

would greatly depend on the numerical scheme, viz. the finite element formulation as well as the discrete

time integration. Moreover, the 0.18 value is known to provide appealing results in the case of isotropic
turbulence computed with accurate numerical methods, such as spectral codes, but turns out to be inaccu-

rate when applied to different flows. Therefore, we chose to keep this 0.18 value, corresponding to Lilly�s
derivation [29], as a reference for the Smagorinsky and VMS closures, rather trying to tune the constant for

the particular case of isotropic turbulence, computed in a given numerical framework. Note that previous

works on the VMS closures [10,11], used, on the contrary, a Smagorinsky constant set equal to 0.1, as a

basis to estimate the VMS constants. Finally, the behavior of the dynamic procedure, and its ability to

adapt to a given numerical framework, is highlighted by Fig. 8, which displays the time evolution of the

dynamically determined constant computed within different formulations. Additional numerical dissipation
has been introduced by adding a discontinuity capturing operator (see [20] for details). On the other hand,

the effect of the least-squares stabilization has been lowered by dividing the characteristic time-scale matrix

by 2, and 4. The model reacts as expected by lowering the constant when the numerical viscosity increases,

namely when the discontinuity capturing operator is plugged in, whereas it tends to increase it when the

stabilizing effect diminishes. Nonetheless, this conclusion must be tempered considering the works of Tej-

ada-Martinez et al. [32,33], indicating an inability of the dynamic procedure to adapt to a streamline up-

wind/Petrov–Galerkin stabilization in an incompressible flow.

Both VMS closures, because they reduce the support of the subgrid viscosity by modifying the depen-
dency of the closure on the largest scales, also provide satisfactory results, very close to the dynamic model.

A close look at Fig. 6 still underlines a slight damping of the highest resolved frequencies, namely the last 4

modes, even for the dynamic and VMS models.

At last, the kinetic-energy spectra, computed on a 813 grid with the Smagorinsky and VMS Small–Small

closures are drawn on Fig. 9 in order to assess the sensitivity of a grid refinement. The multiscale closure

improves greatly the result with respect to the Smagorinsky model, even if a slight damping of the highest

frequencies is still observed. This confirms the good results obtained on coarse grids, and allows us to think

that the statistics and spectra computed with the VMS/GLS formulation may not be affected by a grid
refinement.

Fig. 10 represents the time evolution of enstrophy, confirming the presence of more energetic small struc-

tures for the dynamic and VMS models. The dynamic model exhibits a peak of enstrophy of amplitude:
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Fig. 8. Time history of the dynamic constant Cd computed through different dissipative formulations.



Fig. 9. Turbulent kinetic energy spectra with Smagorinsky and VMS Small–Small closures on a 813 grid. Straight line indicates a

�5/3 slope.

Fig. 10. Time history of resolved enstrophy, 513.
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Dmax

Dðt¼0Þ ¼ 6.3. The maximum of enstrophy is obtained at tc = 13.56 whereas, in the inviscid case, the critical

time when enstrophy blows up is equal to 5.9D(t = 0)�1/2 � 13.83, for the 513 mesh.

4.3. Sensitivity of the scale partition

The kinetic energy spectra obtained with the Small–Small closure for different scale partitioning is pre-
sented on Fig. 11. When the kc=k

0
c ratio decreases, the model tends to be overdissipative. In the limit

kc=k
0
c ’ 0 it is nothing but the usual Smagorinsky model. On the contrary, for kc=k

0
c P 0.5, despite the

Gaussian filter that spreads dissipation over the whole resolved modes, the energy cascade is underpre-

dicted, and the flow hardly sees the subgrid model.

4.4. Comparison between numerical and subgrid dissipation

It has already been underlined that a key point in developing an effective subgrid model is its ability to
adapt to a given numerical framework. In an industrial context, constraints are strong to have a robust



Fig. 11. Sensitivity of the scale partition for the VMS Small–Small closure, 513.
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code and imply the use of sophisticated stabilization techniques. Effects of the different sources of dissipa-

tion are now investigated. Figs. 12–14 represent the spectral density of probability of both the subgrid dis-

sipation and the dissipation due to the least-squares stabilization, respectively on the 213, 513 and 813 grids.

The subgrid energy dissipation rate is calculated as: esgs ¼ quir � ssij . It is worth noting that the least-

squares stabilization acts on the momentum equations as well as the continuity and energy equations.

Nevertheless, only the contribution on the momentum equations is taken into account here to make a
relevant comparison with the subgrid dissipation. Thus, the least-squares dissipation is assessed as
egls ¼
X4

k¼2

Unck �
Z
XðnÞ

bA;iN ;isðbA0
bV ;t þ bAj

bV ;jÞ
� �k

k
dXðnÞ

" #
ð45Þ
where ck denotes the kth component of the considered vector, Un is the U-vector at node n, N is the shape

function associated with the node n, and X(n) is the set of all the elements that contain node n.

The dissipation spectra in Figs. 12–14 are normalized by the mean of the root mean square of total dis-

sipation obtained by each simulation. It enables to compare not only the shapes of the spectra but also the

relative levels of dissipation for each grid.
0.001

Smagorinsky
Dynamic
Small-Small
Large-Small Least-squares

terms

terms
Subgrid

0.01

0.1

1

1 10

k

Fig. 12. Comparison of least-squares and subgrid dissipation spectra for the different models, 213.
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Fig. 14. Comparison of least-squares and subgrid dissipation spectra for the Smagorinsky and VMS Small–Small closures, 813.
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It appears clear that for all simulations, the dissipation due to the numerical formulation dominates the

subgrid effects! Garnier et al. [34] already underlined this fact with the generalized Smagorinsky constant

concept. Despite the relatively weak importance of the subgrid dissipation in front of the numerical dissi-
pation, a variation on the subgrid model has been seen to yield different results: the effect of subgrid mod-

elization is obviously not negligible. This is also coherent with ILES computations, which were not

dissipative enough, with a resolved kinetic energy decay rate higher than �5/3.

The shape of least-squares and subgrid-dissipation spectra are also rather different from each other. The

subgrid models give raise to a dissipation spectrum of the form k2E(k) / k1/3 while the least-squares dissi-

pation spectrum is rather of the form k4/3. The numerical formulation used here tends to over-dissipate the

small scales, confirming that it cannot perform ILES. Besides, as already mentioned, the computations

show that the least-squares dissipation is much more sensitive to the mesh than a subgrid closure.
A very interesting point for the variational multiscale approach is that it automatically incorporates

some information on the numerical dissipation, since the closures depend on the high frequency part of

the resolved field. Thus, in presence of another source of small-scale damping, the computed turbulent
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viscosity will diminish and provide the right correction. This is typically the behavior expected from the

Germano and Lilly�s dynamic procedure. Comparison of Figs. 12 and 13 shows the translation of the

subgrid dissipation spectra of dynamic and VMS models on the 513 grid, namely when the numerical

dissipation is higher with respect to the calculation on the 213 grid.

At last, it is worth noting that the least-squares dissipation is lower with the Smagorinsky model than
with the other closures, since this model induces too high a damping of the smallest scales. Therefore,

the computed gradients in the expression of the least-squares stabilization term are weaker.

Figs. 15–17 represent the equivalent effective viscosity of both dissipation, respectively: mesgs ¼ esgs=2k
2

EðkÞ and megls ¼ egls=2k
2EðkÞ. This can be compared with the work of Domaradzki et al. [35] who proposed

a method for computing effective numerical eddy viscosity, evaluated on the non-oscillatory finite volume

scheme MPDATA.

Eventually, the coherence between GLS and subgrid dissipation is drawn in Figs. 18 and 19 for both

mesh sizes.
Fig. 16. Effective viscosity corresponding to the least-squares stabilization, 513.
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Fig. 15. Effective viscosity corresponding to the subgrid kinetic energy dissipation rate, 513.
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Fig. 17. Effective viscosity, 813.
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It is defined as
Cðegls; esgsÞ ¼

Z
kkk

eglse
�
sgs dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

kkk
eglse

�
gls dk

Z
kkk

esgse
�
sgs dk

s ; ð46Þ
where egls and esgs are respectively the GLS and subgrid dissipation in the Fourier space, and C(egls, esgs) is
the coherence coefficient (Fig. 20).

Beside the different levels of dissipation brought by each model, the spectral behavior turns out to be also

very important, and consequently the energy-transfer mechanisms are not described in the same manner.
5. Conclusions

The variational multiscale approach has been investigated in physical space based on simulations of

freely evolving isotropic turbulence. The hyperviscosity formulation of the VMS on unstructured meshes

is detailed and yields good results. It correctly balances the kinetic energy transfers taking into account

the dissipation coming from the GLS stabilization technique. Furthermore, this approach can easily be

implemented and proves efficient. It represents an increase of the CPU time of only 20% with respect to
the Smagorinsky model, while the dynamic procedure involves an increase of almost 35%. Eventually,

the VMS approach, as implemented, can be extended to complex flows without restrictions on homogeneity

directions, unlike the dynamic model because of its instability problem.
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Appendix A. Filtered equations of a turbulent compressible flow

The compressible Navier–Stokes equations for a perfect gas are
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oq
ot

þ oquj
oxj

¼ 0;

oqui
ot

þ oquiuj
oxj

þ op
oxi

¼ orij

oxj
;

oqE
ot

þ oqEuj
oxj

þ
opuj
oxj

¼ orijui
oxj

�
oqj
oxj

.

ð47Þ
The filtered counterpart of Eq. (47) is obtained using the mass-weighted change of variables defined on a

variable / as ~/ ¼ q/=�q. In order to keep time-dependent integration quantities, Lee [36] substitutes the fil-

tered total energy equation qE ¼ �qeE ¼ �p=ðc� 1Þ þ 1
2
�qguiui by the transport equation of the computable

energy:
�q�E ¼ �p
c� 1

þ 1

2
�q~ui~ui ¼ �qeE � 1

2
sii; ð48Þ
where sij ¼ �qguiuj � �q~ui~uj is the subgrid tensor.

If the filtering of the momentum equations appears quite classic, by the introduction of a subgrid tensor

similar as the one introduced for incompressible flows, there remain several approaches for the filtered en-

ergy equation. One can cite for instance the works of Vreman [37] or Sreedhar and Raghab [38]. Following

the results of Vreman et al. [21] within the context of a priori tests on DNS of a temporal mixing layer, the

non-linearity associated with viscous stress and heat flux are assumed negligible. Yoshizawa [39], as well as

Moin et al. [40] proposed a modelization for the trace of the subgrid tensor. Ducros et al. [41] introduce a
macro-temperature incorporating the trace of the subgrid tensor, by reference to the macro-pressure of

Métais and Lesieur [42]. The approach used in our case consists merely in neglecting the trace of the subgrid

tensor, advocating as proposed by Erlebacher et al. [43,44] that skk ¼ cM2
sgs�p and Msgs the subgrid Mach

number is small when the considered infinite Mach number is not too large. More precisely, the authors

highlight that the thermodynamic pressure will be much more important when the subgrid Mach number

is lower than 0.4, or equivalently for turbulent Mach numbers up to 0.6. This latter condition incorporates

a major part of supersonic flows. This was quite well verified by Ducros et al. [41], but Moin et al. [40]

found that the subgrid energy represents 40% of the thermodynamic pressure when considering turbulent
Mach numbers around 0.35. This enables, however, to keep in the equations a non-modified pressure, and

it also leads to: �qeE ’ �q�E. Besides, in order to take into account the subgrid stress appearing in the momen-

tum equations, the associated work is explicitely introduced in the total energy equation.

Therefore, the filtered equations resolved herein are
o�q
ot

þ o�q~uj
oxj

¼ 0; ð49Þ

o�q~ui
ot

þ o�q~ui~uj
oxj

þ o�p
oxi

¼ o

oxj
½2~leS ij� �

osdij
oxj

; ð50Þ

o�q�E
ot

þ o�q�E~uj
oxj

þ o�p~uj
oxj

¼ o

oxj
2~leS ij~ui
h i

þ o

oxj
~j
oeT
oxj

" #
�
oQj

oxj
�
osdijui
oxj

; ð51Þ
with Qj ¼ ðqEuj � �qeE~ujÞ þ ðpuj � �p~ujÞ � sdij~ui and sdij ¼ sij � 1
3
skkdij, the deviatoric part of the subgrid ten-

sor, that both need to be modeled.

For non-VMS models, the subgrid stress is modeled within a turbulent viscosity hypothesis:
sdij ¼ �2lt
eS ij; ð52Þ
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and the vector Qj is modeled with reference to the heat flux:
Qj ¼ �jt
oeT
oxj

; jt ¼
ccv~lt

Prt
; ð53Þ
where lt is the eddy-viscosity, jt the turbulent heat conductivity and Prt the turbulent Prandtl number, set

constant and equal to 0.9 for the study.

The filtered perfect gas relation is
�p ¼ �qreT . ð54Þ
Appendix B. Entropy coefficient matrices

The compressible Navier–Stokes equation in conservation variables is
U ;t þ AiU ;i ¼ K ijU ;j
� �

;i
. ð55Þ
Let us recall the definition of the change of variables,
V ¼ 1

qT

�U 5 þ qcvT cþ 1� ðc� 1Þs
r

� �
U 2

U 3

U 4

�U 1

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
¼ 1

T

h� Ts� kuk2

2
u1
u2
u3
�1

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
. ð56Þ
In entropy variables, Eq. (55) rewrites
A0V ;t þ eAiV ;i ¼ ð eK ijV ;jÞ;i; ð57Þ
with
VT ¼ oHðUÞ
oU

; ð58ÞeA0 ¼ U ;V ; ð59ÞeAi ¼ Ai
eA0; ð60ÞeK ij ¼ K ij
eA0. ð61Þ
Let us denote k ¼ 1
2
ku2k the specific kinetic energy, e = cvT the specific internal energy, �c ¼ c� 1, and
c1 ¼ �ceþ u21; c2 ¼ �ceþ u22; c3 ¼ �ceþ u23;

k1 ¼ k þ ce; k2 ¼ k þ e; k3 ¼ k þ ð�cþ cÞe;
k4 ¼ k2 þ 2cek þ ce2; k5 ¼ k24 þ 2�ceðk þ ceÞ.

ð62Þ
The Riemannian metric tensor eA0 is, in term of primitive variables,
eA0 ¼
q

cvðc� 1Þ

1 u1 u2 u3 k2
e�cþ u21 u1u2 u1u3 k1u1

e�cþ u22 u2u3 k1u2
Symm: e�cþ u23 k1u3

k4

26666664

37777775. ð63Þ
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The advective Jacobians eAi read:
eA1 ¼
q

cvðc� 1Þ

u1 c1 u1u2 u1u3 k1u1
ð2�ceþ c1Þu1 c1u2 c1u3 c1k1 þ �ceu21

c2u1 u1u2u3 k3u1u2
Symm: c3u1 k3u1u3

k5u1

26666664

37777775; ð64Þ

eA2 ¼
q

cvðc� 1Þ

u2 u1u2 c2 u2u3 k1u2
c1u2 c2u1 u1u2u3 k3u1u2

ð2�ceþ c2Þu2 c2u3 c2k1 þ �ceu22
Symm: c3u2 k3u2u3

k5u2

26666664

37777775; ð65Þ

eA3 ¼
q

cvðc� 1Þ

u3 u1u3 u2u3 c3 k1u3
c1u3 u1u2u3 c3u1 k3u1u3

c2u3 c3u2 k3u2u3
Symm: ð2�ceþ c3Þu3 c3k1 þ �ceu23

k5u3

26666664

37777775. ð66Þ
The diffusive fluxes are given as
Fdiff
i ¼

0

r1i

r2i

r3i

rijuj � qi

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
; ð67Þ
where rij = l(ui,j + uj,i) + kuk,kdij and qi = �jT,i.

The velocity components and temperature are written as
~ui ¼ �
bV iþ1bV 5

; ð68Þ

eT ¼ � 1bV 5

. ð69Þ
Let us denote v = k + 2l, the diffusivity matrices defined as eK ijV ;j ¼ Fdiff
i are then written, in term of

primitive variables as
eK 11ðl; k; j;UÞ ¼ T

0 0 0 0 0

0 v 0 0 vu1
0 0 l 0 lu2
0 0 0 l lu3

0 vu1 lu2 lu3 vu21 þ l u22 þ u23
� �

þ lcp
Pr

T

266666664

377777775; ð70Þ
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eK 22ðl; k; j;UÞ ¼ T

0 0 0 0 0

0 l 0 0 lu1
0 0 v 0 vu2
0 0 0 l lu3

0 lu1 vu2 lu3 vu22 þ l u21 þ u23
� �

þ lcp
Pr

T

26666664

37777775; ð71Þ

eK 33ðl; k; j;UÞ ¼ T

0 0 0 0 0

0 l 0 0 lu1
0 0 l 0 lu2
0 0 0 v vu3

0 lu1 lu2 vu3 vu23 þ l u21 þ u22
� �

þ lcp
Pr

T

26666664

37777775; ð72Þ

eK 12ðl; k; j;UÞ ¼ eK T

21 ¼ T

0 0 0 0 0

0 0 k 0 ku2
0 l 0 0 lu1
0 0 0 0 0

0 lu2 ku1 0 kþ lð Þu1u2

2666664

3777775; ð73Þ

eK 13ðl; k; j;UÞ ¼ eK T

31 ¼ T

0 0 0 0 0

0 0 0 k ku3
0 0 0 0 0

0 l 0 0 lu1
0 lu3 0 ku1 kþ lð Þu1u3

2666664

3777775; ð74Þ

eK 23ðl; k; j;UÞ ¼ eK T

32 ¼ T

0 0 0 0 0

0 0 0 0 0

0 0 0 k ku3
0 0 l 0 lu2
0 0 lu3 ku2 kþ lð Þu2u3

2666664

3777775. ð75Þ
In practice, Stokes� hypothesis is assumed, i.e., k + 2/3l = 0.

The subgrid diffusivity matrices for LES and variational multiscale LES are easily derived from these

expressions: bK SGS

ij (see Eq. (21)) is obtained by replacing l and Pr respectively by lt and Prt and KVMS
ij

(see Eq. (39)) is obtained by replacing l, Pr and ui respectively by lt, Prt and u00i ¼ � D00

24
ui;kk .
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