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Abstract. The solution of the compressible Navier Stokes equations constitutes a
very challenging problem for applied mathematics. The methods developed using a
finite element approach and Galerkin least - squares stabilized formulation will be
reviewed. Various applications will be described to illustrate the capability of the
method for aircraft design including space plane projects and long range business
jets. Finally, general trends for future developments will be identified.
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1 INTRODUCTION

Solution of the compressible Navier Stokes equations presents many challenges
for numerical analysis. One challenge is associated to the mixed hyperbolic / el-
liptic nature of the equations with different behavior for subsonic and supersonic
flows; the equations include very strong non linearities and lead to solutions where
discontinuities (shocks) can develop; solutions are mostly advection dominated but
viscous contributions can go from a 10~% perturbation to a dominant term; solutions
also exhibit very anisotropic behavior due to boundary layers which impose space
discretization with extremely high aspect ratios elements. Stabilized methods have
demonstrated that they can offer very satisfactory answers to all those challenges.

Most initial efforts to develop methods for compressible flows relied on finite differ-
ence or finite volume approaches and often used Riemann solvers. T.J.R Hughes’s
group was among the few research groups which chose to follow a finite element
strategy. An incomplete and very simplified listing of the successive steps in the
development of stabilized methods for the compressible Navier Stokes equations
within this group follows. It starts with a first extension of the original Brooks and
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Hughes! scheme to the Euler equations.? Entropy variables,® the generalized SUPG
operator’ and discontinuity capturing operator® were proposed next. Theoretical
analysis,® efficient implicit” and parallel® methods were then established. The next
step was to extend the approach to complex thermodynamics.” The CFD group
at Dassault has close links with these developments and progressively, at Dassault,
varied and complex aircraft design applications have been performed.

The compressible Navier Stokes equations and the rational for using entropy
variables will be presented in the first paragraph. The stabilized finite element
method will be described next. In the last paragraph, a number of representative
computations for aircraft design will be reviewed.

2 THE COMPRESSIBLE NAVIER STOKES EQUATIONS AND EN-
TROPY VARIABLES

As a starting point, we consider the Euler and Navier-Stokes equations written
in conservative form:

U, +FY =F" (1)

where U is the vector of conservative variables : U = (p, pu, pv, pw, pe) ; F*
and FT are, respectively, the advective and the diffusive fluxes in the i®-direction.
Inferior commas denote partial differentiation and repeated indices indicate summa-
tion.

Equation (1) can be rewritten in quasi-linear form:

Us+ AU, = (KU ;) (2)
where A; = F{y is the i'" advective Jacobian matrix, and K = [K;;] is the
diffusivity matrix, defined by Ff = K;;U,;. The A;’s and K do not possess any

particular property of symmetry or positiveness.
We now introduce a new set of variables,

oM

vi=_—
ou

where H is the generalized entropy function given by

H=H{U)=—ps (4)

and s is the thermodynamic entropy per unit mass. Under the change of variables
U — V, (2) becomes:

AV + AV, = (KijV;), (5)
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where
A =Uy (6)

The Riemannian metric tensor A, is symmetric positive-definite; the A4;’s are
symmetric; and K = [K;;] is symmetric positive-semidefinite. (In view of these
properties, (5) is referred to as a symmetric advective-diffusive system).

For dvantages of this change of variables are numerous: it provides strong math-
ematical and numerical coherence (dimensionally correct dot product, symmetric
operators with positivity properties, efficient preconditioning). In addition, entropy
variables yield further improvements over the usual conservation variables, in par-
ticular in the context of chemically reacting flows.'°

a general divariant gas, the vector of so-called (physical) entropy variables, V,
reads

(1= lu2/2
V== u

T -1

where p1 = e+pv—"T's is the chemical potential per unit mass; v = 1/p is the specific
volume.

Taking the dot product of (5) with the vector V yields the Clausius-Duhem
inequality, which constitutes the basic nonlinear stability condition for the solutions
of (5). This fundamental property is inherited by appropriately defined finite element
methods, such as the one described in the next section.

3 THE GALERKIN/LEAST-SQUARES FORMULATION FOR COM-
PRESSIBLE FLOWS

The Galerkin/least-squares (GLS) formulation is a full space-time finite element
technique employing the discontinuous Galerkin method in time.'! The least-squares
operator ensures good stability characteristics while retaining a high level of accu-
racy. The local control of the solution in the vicinity of sharp gradients is further
enhanced by the use of a nonlinear discontinuity-capturing operator.

We consider the time interval I = ]0,7[, which we subdivide into N intervals
I, =tn, tpi1[, n=0,...,N — 1. Let

Q. =QxI1,,P, =I'x1I, 9)

where (2 is the spatial domain of interest, and I is its boundary. In turn, the space-
time “slab” @, is tiled by (ne), elements Q<. Consequently, the Galerkin/least-
squares variational problem can be stated as :

Within each Q,, n =0,..., N —1, find v € 8" (trial function space), such that
for all W" € V! (weighting function space), the following equation holds:

/ (-wh-owh) —wh YW +whK;vE) dQ

n

L (W ) UV (1)) = W (ED) - U(V'(E,))) 2
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el nel
/ / (w™) - r(Lv") dQ + Z / "gIwWh - AV dQ
_ wh . (_ FiadV(Vh) + Fidiff(Vh))ni dP. (10)

Py

The first and last integrals represent the Galerkin formulation written in integrated-
by-parts form. The solution space consists of piecewise polynomials which are con-
tinuous in space, but are discontinuous across time slabs. Continuity in time is
weakly enforced by the second integral in (10), which contributes to the jump con-
dition between two contiguous slabs, with

zZh(tE) = lim Zz M(t, +e).

e—0%

The third integral constitutes the least-squares operator where L is defined as

o - d ,~ 0
L= A08t+Aia—%—a—%(Kﬁa—%). (11)

7 is a symmetric matrix for which definitions can be found in.'! The fourth
integral is the nonlinear discontinuity-capturing operator, which is designed to con-
trol oscillations about discontinuities, without upsetting higher-order accuracy in
smooth regions. ¢g* is the contravariant metric tensor defined by

9] = [¢:- €] (12)

where ¢ = ¢(x) is the inverse isoparametric element mapping, and v is a scalar-
valued homogeneous function of the residual £Lv". The discontinuity capturing
factor " used in the present work is an extension of that introduced by Hughes,
Mallet, and Shakib.!!

A key ingredient to the formulation is its consistency: the exact solution of (1)
satisfies the variational formulation (10). This constitutes an essential property in
order to attain higher-order spatial convergence.

Convergence to steady state of the compressible Navier Stokes equations is achieved
through a fully-implicit iterative time-marching procedure based on the GMRES al-
gorithm.”

A low-storage extension based solely on residual evaluations was developed by
Johan.® It reveals particularly adapted to parallel processing,'? where the linear
solver often constitutes a painful bottleneck.

4 APPLICATIONS
4.1 Design of the HERMES space plane

The first application of the NS code based on the Galerkin least squares approach
was the aerothermal design of the Hermes space plane in the early 90’s. This is il-
lustrated by the calculation of the flow over the canopy of Hermes. It was performed
at the most critical point on the reentry flight path for the windshield design: the
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altitude is 60 km, the Mach number is 20 and the angle of attack is 30 degrees. At
this altitude the Re/m is 120,890. The equilibrium real gas hypothesis was used
along with radiative boundary conditions. The mesh includes approximately one
million elements. The surface mesh is presented in Figure 1. The finite element
approach allows mesh refinement and a precise representation of the details of the
geometry in the windshield area. Considerable mesh density is used in the direction
perpendicular to the wall. Stanton number isolines are presented in Figure 2. Com-
plex flow structure is observed. Detailed discussion of Navier-Stokes calculations
related to the aerothermal design of Hermes can be found in Naim et al'® and in.!*

4.2 Design of the Crew Transfer Vehicle

Intensive parallel computing was used during the design process of a Crew Res-
cue/Crew Transfer Vehicle. Starting with the X-24, the final shape has been se-
lected by NASA for its Crew Rescue Vehicle, and may as well serve as the basis for
the future European Crew Transfer Vehicle. The transonic optimization of such a
spacecraft required numerous detailed computations of the complex flow between
the main body and the winglets. Thanks to the NEC SX-4 installed at NLR, key
ingredients to the design, such as multi-point lift-versus-drag and pitching-moment-
versus-angle-of-attack curves, could be computed overnight. Eight processors were
used routinely on meshes made up of about 220,000 nodes for symmetric configura-
tions. This design project was the first project to rely on the ability to perform a

complete shape computation with overnight turn over. The reader is referred to'
for further details about the design of the CRV/CTV.

For the purpose of illustration, we have selected an unsymmetrical configuration
past one of the many spacecraft shapes which were considered in the design iteration
process: the free-stream Mach number is 0.95, the angle of attack 20°, and the side-
slip angle 5°. A view of the surface mesh is presented in Figure 5. The complete
three-dimensional mesh contains about 500,000 nodes. Figure 6 shows the pressure-
coefficient contours on the surface of the CRV/CTV: it gives an idea of the complex
flow pattern which surrounds the vehicle.

4.3 Flow over a delta wing at high angle of attack

The flow over a delta wing at high angle of attack is characterized by a complex
vortex structure and possible vortex breakdown. Accurate prediction of wing lift
requires a good prediction of these vortices since the high velocity associated with
the leeward vortices is associated with low pressure, while vortex breakdown will
lead to a loss of lift. Fig 6 presents the vortex structure over a military wing at
Mach 0.2 and an angle of attack of 25 degrees. A blunt generic forebody is included
to avoid possibly unsteady cone vortices associated to a typical forebody. Slats are
deflected at different angles. Three vortices are identified : one originating from the
wing fuselage junction and two from each of the two slats. Computations have been
performed with a two layer (k,eps) model and with an Explicit Algebraic Reynolds
Stress model, the latter model yields improved results.
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4.4 Afterbody of fighter aircraft

Computation of the flow over the afterbody of a military aircraft is performed with
two objectives : to assess drag and to provide data for infrared stealth prediction.
Afterbody flow includes many challenging features : normal shocks along the jet
axis, compressible mixing layers with high density and temperature gradients, base
flow and a possible shock wave - boundary layer interaction over the aft part of
the fuselage. The thermodynamic model must account for the concentration and
vibrational modes of species resulting from combustion that flow out of the nozzle.
One example of such a computation is presented in Figure 6 for a two engine aircraft.

4.5 Transonic wing design

The design of a highly optimized wing for a long range jet flying at high transonic
speed is one of the most complex task for aerodynamicists. Recent design compu-
tations using the Galerkin least squares approach is illustrated in Figure 7 where
computed pressures are compared to wind tunnel results. Very good agreement is
observed. Pressure sensitive paint is used in the wind tunnel to measure the pressure
distribution over almost the entire wing. The computation accounts for the wind
tunnel model static deformation under aerodynamic loads. Real wing deformation
will be different since the structure of the wind tunnel model is not representative of
the actual structure. A few hundred such computations have been performed over
the duration of the design project. Several points over the polar curve are computed
for each shape, several cruise Mach numbers are also considered. Buffet onset is pre-
dicted (buffet is an unsteady phenomena associated to shock wave - boundary layer
interaction). A typical mesh includes about 1.5 millions nodes. A two layer (k,eps)
model is used with non equilibrium corrections and a calibrated set of constants.

5 CONCLUSIONS

The main features of the Galerkin least squares method for compressible Navier
Stokes simulations have been described. Important applications have been reviewed
and illustrate the considerable progress made over the past 20 years and its impact
on real life design. The next two decades should also seek to achieve ambitious goals.
Future needs include accurate prediction of always more complex turbulent flows.
This includes flows with complex interactions or large scale unsteady behavior and
will require improved turbulence models. Large eddy simulation is a very promising
approach' in particular in the framework of the variational multiscale method.!”
Its application to design will require further development, a zonal approach with
coupling to RANS model might be needed for many applications. Automatic shape
optimization has made considerable progress recently.'® Its widespread application
to various design problems still requires continued effort, in particular when viscous
flow models are needed. Various multidisciplinary problems are already addressed
using complex simulation sequences.'® Examples include prediction of structural
vibration (most notably flutter and buffet induced acceleration), the evaluation of
infrared signature or airframe acoustic modeling. Future simulations will include
further multidisciplinary problems with strong coupling between models.
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Figure 5: Flow over a delta wing with slats

Figure 6: Afterbody flow
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Figure 7: Transonic wing



