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Abstract. This paper describes the extension of Dassault Aviation’s stabilized finite

element industrial Navier-Stokes code to higher-order elements. The high-order approach

is carefully assessed using inviscid subsonic and transonic, laminar, and high Reynolds

number turbulent flows. First results on a full aircraft configuration are presented.

Figure 1: Falcon 900EX: M = 0.80, α = 2.0◦, Re = 14, 500, 000. Pressure contours on the aircraft
surface, entropy in the wake; linear (left) and quadratic elements (right) on the same 19,905,887-node
mesh.
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1 INTRODUCTION

The European project ADIGMA (Adaptive Higher-Order Variational Methods for
Aerodynamic Application in Industry) (see [1] and http://www.dlr.de/as/) proposed
a framework to address many of the accuracy and cost issues of current industrial CFD
codes. The different partners have put together innovative higher-order methods which
will constitute key ingredients for the next generation of industrial flow solvers. The
participation of Dassault Aviation focused on higher-order stabilized finite elements for
its industrial Navier-Stokes code Aether.

Although Dassault Aviation started from the beginning with unstructured meshes and
a Navier-Stokes code based on a finite element formulation, the claim that finite elements
can fairly effortlessly and in a straightforward manner go high in order was never fully
exploited. We currently still use for all Navier-Stokes calculations linear elements which
yield second-order accuracy [6, 10, 11]. A single but successful attempt was made to
compute the flow past a supersonic ramp [3] using quadratic elements.

In this paper, higher-order (3rd and 4th order) finite elements in the SUPG/Galerkin-
least squares framework are revisited. We present results showing the balance between
the resulting improved accuracy and the potentially reduced robustness. Mesh generation
aspects are treated and especially the issue of highly-stretched curved elements close to
the wall boundary of Navier-Stokes meshes. The high-order approach is carefully assessed
using subsonic and transonic inviscid flows, laminar flows, and high Reynolds number
turbulent flows. Industrial aspects towards complex 3-D geometries are discussed. First
higher-order results on a full aircraft configuration are presented.

2 HIGHER-ORDER STABILIZED FINITE ELEMENT SCHEMES FOR
THE RANS EQUATIONS

We present our numerical method in the following sections and highlight the adjust-
ments required by higher-order elements.

2.1 General description of our flow solver

Dassault Aviation’s Navier-Stokes code, called AETHER, uses a finite element approach,
based on a symmetric form of the equations written in terms of entropy variables. The
advantages of this change of variables are numerous: in addition to the strong mathemat-
ical and numerical coherence they provide (dimensionally correct dot product, symmetric
operators with positivity properties, efficient preconditioning), entropy variables yield fur-
ther improvements over the usual conservation variables, in particular in the context of
chemically reacting flows (see [5, 6]).

The code can handle the unstructured mixture of numerous types of elements (triangles
and quadrilaterals in 2-D; tetrahedra, bricks, and prisms in 3-D). In practice mostly linear
triangular and tetrahedral meshes are used.

Different one- and two-equation Reynolds-averaged turbulence models are available:
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Spalart-Allmaras, K-ε, K-ω, K-ℓ, K-KL. . . These models are either integrated down to
the wall, use a two-layer approach with a low-Reynolds modelization of the near wall
region, or adopt a wall function treatment of the boundary layer. More advanced RANS
models, such as EARSM and RSM, and extensions to LES and DES are also available
(see [8], [9], and [11]).

Convergence to steady state of the compressible Navier Stokes equations is achieved
through a fully-implicit iterative time-marching procedure based on the GMRES algo-
rithm with nodal block-diagonal or incomplete LDU preconditioning (see [16]).

The code has been successfully ported on many computer architectures. It is fully
vectorized and parallelized for shared or distributed memory machines using the MPI
message passing library (IBM SP2 Series, IBM Blue Gene, Itanium II- and Xeon-based
Bull NovaScale) or native parallelization directives (NEC SX-4) (see [7]).

2.2 The symmetric Navier-Stokes equations

As a starting point, we consider the compressible Navier-stokes equations written in
conservative form: U,t + F adv

i,i = F diff
i,i (1)

where U is the vector of conservative variables; F adv
i and F diff

i are, respectively, the
advective and the diffusive fluxes in the ith-direction. Inferior commas denote partial
differentiation and repeated indices indicate summation.

Equation (1) can be rewritten in quasi-linear form:U,t +AiU,i = (KijU,j),i (2)

where Ai = F adv
i,U

is the ith advective Jacobian matrix, and K = [Kij] is the diffusivity

matrix, defined by F diff
i = KijU,j. TheAi’s andK do not possess any particular property

of symmetry or positiveness.
We now introduce a new set of variables,V T =

∂H

∂U
where H is the generalized entropy function given by

H = H(U) = −ρs

and s is the thermodynamic entropy per unit mass. Under the change of variablesU 7→ V ,
(2) becomes: Ã0V,t + ÃiV,i = (K̃ijV,j),i (3)

where Ã0 = U,VÃi = AiÃ0K̃ij = KijÃ0.
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The Riemannian metric tensor Ã0 is symmetric positive-definite; the Ãi’s are symmetric;
and K̃ = [K̃ij] is symmetric positive-semidefinite. In view of these properties, (3) is
referred to as a symmetric advective-diffusive system.

For a general divariant gas, the vector of so-called (physical) entropy variables, V ,
reads V =

1

T





µ − |u|2/2u
−1





where µ = e + pv − Ts is the chemical potential per unit mass; v = 1/ρ is the specific
volume. More complex equations of state are treated in [4]. We would like to stress
the formal similarity between the conservation variables U and the entropy variables V ,
which can be made more apparent if we write the conservation variables in the following
form: U =

1

v





1u
e + |u|2/2





where v = 1/ρ is the specific volume.
Taking the dot product of (3) with the vector V yields the Clausius-Duhem inequality,

which constitutes the basic nonlinear stability condition for the solutions of (3). This
fundamental property is inherited by appropriately defined finite element methods, such
as the one described in the next section.

2.3 The Galerkin/least-squares formulation

Originally introduced by Hughes and Johnson, the Galerkin/least-squares (GLS) for-
mulation is a full space-time finite element technique employing the discontinuous Galerkin
method in time (see [2, 17]). The least-squares operator ensures good stability characteris-
tics while retaining a high level of accuracy. The local control of the solution in the vicinity
of sharp gradients is further enhanced by the use of a nonlinear discontinuity-capturing
operator.

Let Ω be the spatial domain of interest and Γ its boundary. The semi-discrete Galer-
kin/least-squares variational problem can be stated as:

Find V h ∈ Sh (trial function space), such that for all W h ∈ Vh (weighting function
space), the following equation holds:

∫

Ω

(
W h ·U,t(V h) − W h

,i · F adv
i (V h) +W h

,i · K̃ijV h
,j

)
dΩ

+
nel∑

e=1

∫

Ωe

(
LW h

)
· �(

LV h
)

dΩ

+
nel∑

e=1

∫

Ωe

νhgijW h
,i · Ã0V h

,j dΩ
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=
∫

Γ
W h ·

(
− F adv

i (V h) + F diff
i (V h)

)
ni dΓ. (4)

The first and last integrals of (4) represent the Galerkin formulation written in inte-
grated-by-parts form to ensure conservation under reduced quadrature integration.

The second integral constitutes the least-squares operator where L is defined as

L = Ã0
∂

∂t
+ Ãi

∂

∂xi

−
∂

∂xi

(K̃ij

∂

∂xj

). (5)� is a symmetric time-scale matrix for which definitions can be found in [17].
The third integral is the nonlinear discontinuity-capturing operator, which is designed

to control oscillations about discontinuities, without upsetting higher-order accuracy in
smooth regions. gij is the contravariant metric tensor defined by

[gij] = [�,i · �,j]
−1

where � = �(x) is the inverse isoparametric element mapping and νh is a scalar-valued
homogeneous function of the residual LV h. The discontinuity capturing factor νh used
for linear elements is an extension of that introduced by Hughes, Mallet, and Shakib (see
[15, 17]).

A key ingredient to the formulation is its consistency: the exact solution of (1) satisfies
the variational formulation (4). This constitutes an essential property in order to attain
higher-order spatial convergence.

2.4 Extension to higher-order elements

In principle everything is contained in the weighted residual given by Eq. (4). There
is no new term to code, no interpolation technique specific to higher order to derive:
everything is already there. We just have to compute the integrals of (4), taking into
account the new higher-order shape functions.

The volume and surface integrals are numerically evaluated with quadrature rules. All
is needed is the values of the shape functions (and their gradients) at the integration
points. Higher-order functions only require more precise integration rules. In 2-D, we use
3-, 6-, and 12-point rules, respectively for linear, quadratic, and cubic triangles. They have
orders of accuracy which integrate exactly polynomials of degrees 2, 4, and 6 respectively.

For a given number of degrees of freedom, higher-order meshes contain much fewer
elements than P1 meshes. In 2-D the ratio is 1/4th for quadratic triangles, and 1/9th
for cubic. Although more integration points are required, the higher-order computation
of (4) is actually cheaper. The extra cost comes from the implicit linear system which
possesses a much larger bandwidth. For a regular 2-D mesh with six triangles connected
to a given node, each line of the implicit matrix contains 7, 19, and 37 non-zero blocks,
respectively for P1, P2, and P3 elements (for vertex degrees of freedom).
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Preliminary quadratic and cubic element results obtained with the original stabilization
and discontinuity capturing term used for linear elements, appeared too diffusive especially
for inviscid transonic test cases. This is an indication that the intrinsic time scale matrix �
must be reduced for higher-order elements. Theoretical study of the 1-D scalar advection
diffusion equation showed that the optimal � must indeed be reduced in the advective
limit for any higher-order element. The shock capturing operator must also be tuned in
a similar fashion.

In fact, one term in the weighted residual must be specially treated in the context of
higher-order elements for the Navier-Stokes equations. The last term in (5) vanishes to
zero for linear elements. It appears in the second integral of (4). This term must be
computed with higher-degree shape and test functions in order to preserve consistency.
In practice, it is evaluated using an L2-projection.

One-dimensional studies showed that there was no significant differences between SUPG
and Galerkin/least-squares. We have chosen to concentrate solely on SUPG which is easier
to implement.

As a final remark, we want to stress the fact that whatever the order of the elements, all
operations remain local (viz. at the element level). Consequently higher-order elements
engender no implicitation nor parallelization issue (see [7]).

2.5 Isoparametric meshes with curved boundaries

We have made the seemingly obvious choice of higher-order isoparametric elements.
One of the advantages of these elements, besides the higher-order shape functions, is the
use of higher-order polynomials to represent curved boundaries. They only ensure C0

continuity across elements, but locate all the nodes on the actual surface.
We had thought at first that the slope discontinuity across element boundaries could

be minimized by adjusting the location of the extra nodes along the sides and the faces
of elements beyond P1. In practice it is very easy to generate negative elements with
“shamrock”-like edges if one tries to play with node location along edges to optimize
curvature. Consequently we sticked in this study to elements with equally distributed
nodes along the edges and faces.

All higher-order meshes were obtained by adding nodes to a coarse initial P1 mesh.
For more detailed information about higher-order mesh generation, the reader is referred
to [12].

3 TWO-DIMENSIONAL VALIDATION TEST CASES

Dassault Aviation computed four of the Mandatory Test Cases (referred to as MTC’s)
defined in the ADIGMA Project (see [18]). They cover a wide range of applications:
from inviscid subsonic and transonic flows (MTC’s 1 and 2), to laminar Navier-Stokes
(MTC 3), and finally a profile in transonic turbulent conditions (MTC 5). All four test
cases were run with the baseline second-order version of Dassault Aviation’s industrial
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Navier-Stokes code AETHER and with the present work third and fourth order extensions.

3.1 MTC 1: NACA0012, M = 0.50, α = 2◦, inviscid

Higher-order meshes for both inviscid test cases were obtained by adding nodes to a
coarse 1106-node P1 mesh. This yields a 4336-node P2 mesh and a 9690-node P3 mesh.
Four finer quadratic grids (up to 1,088,896 nodes) and two finer cubic grids (up to 775,386
nodes) were generated. All new nodes are added on the actual profile. This produces
boundary elements with curved edges. Elements with no face along the boundary have
straight edges.

P1 (4336 nodes) P2 (4336 nodes)

P1 (9690 nodes) P3 (9690 nodes)

Figure 2: MTC 1: NACA0012, M = 0.50, α = 2◦, inviscid. Mach number contours on matching P1
iso-P2 and P2 grids, and P1 iso-P3 and P3 grids.

Higher-order MTC 1 results are compared with those obtained on the corresponding P1
mesh with the same number of nodes in Figure 2. They clearly show the advantage of the
increased order of accuracy brought by quadratic and cubic elements. The entropy layer
generated at the stagnation point is much reduced with quadratic elements and virtually
disappears with cubic elements. This directly impacts the Mach number contours which
traditionally present kinks near the wall on coarse P1 meshes. These kinks are removed
from higher-order calculations, which also present much cleaner contours for the same
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number of degrees of freedom.
The kinks in Mach number contours observed in second-order solutions along the pro-

file are not due to a lower degree of accuracy boundary condition or boundary integral
computation as may have been suggested, but in fact to the level of spurious entropy
generated at the leading edge. It is convected along the profile and affects the solution
close to the airfoil. This fact is confirmed in [13], where local mesh refinement in the sole
leading edge region suppresses the spurious entropy production.
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Figure 3: MTC 1: NACA0012, M = 0.50, α = 2◦, inviscid. Line plots of entropy deviation along the
profile. Comparison of P1 vs P2, and P1 vs P3 results for the same numbers of degrees of freedom.
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Figure 3 displays line plots of entropy deviation along the profile, comparing the base-
line linear-element formulation with quadratic and cubic results obtained with the same
number of degrees of freedom. The reference P1 calculation was calculated on the finest
1,088,896-node mesh

Entropy line plots show that the spurious entropy layer generated at the stagnation
point is much reduced with quadratic elements and virtually disappears with cubic ele-
ments. Much finer P1 meshes are required to match the low level of entropy deviation
observed with P2 and P3 elements.

Figure 4 presents the convergence of the drag and lift coefficients with respect to the
grid size given by its node number or “number of degrees of freedom per equation.”
The error bars represent the convergence definitions provided for the test case: when a
given coefficient reaches within the error bars, the solution is assumed converged for that
particular coefficient.

We can notice a dramatic increase in convergence rate with the order of the scheme.
Lift is converged for every tested higher-order mesh; drag requires more effort, and may
still gain from an increase in scheme order beyond 4. Even CPU time shows a gain with
scheme order.

# of dof per equation

C
D
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0.001
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0.003

linear
quadratic
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conv def

# of dof per equation

C
L
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0.278

0.28

0.282

0.284

linear
quadratic
cubic
conv def

Figure 4: MTC 1: NACA0012, M = 0.50, α = 2◦, inviscid. Convergence of force coefficients for P1, P2,
and P3 elements.
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3.2 MTC 2: NACA0012, M = 0.80, α = 1.25◦, inviscid

MTC 2 is a transonic inviscid test case. It is interesting in its own respect, since it
can challenge the ability of higher-order elements to treat shocks with the help of the
discontinuity capturing operator.

Figure 5 shows Mach number contours on the same set of meshes used for MTC 1. In
spite of the presence of the shock wave, no obvious degradation in the solution quality
can be observed. P3 elements even produce the best result with a well resolved slip line
and a finely captured windward-side weak shock.

P1 (4336 nodes) P2 (4336 nodes)

P1 (9690 nodes) P3 (9690 nodes)

Figure 5: MTC 2: NACA0012, M = 0.80, α = 1.25◦, inviscid. Mach number contours on matching P1
iso-P2 and P2 grids, and P1 iso-P3 and P3 grids.

The pressure line plots shown in Figure 6 display smooth behaviors with sharp shocks,
actually sharper than corresponding second order solutions. The windward side weak
shock is more accurately captured. The reference solution is that obtained in the asymp-
totic convergence study with the finest P1 mesh containing 1,088,896 nodes. It must be
noted that these line plots do not represent the actual higher-order shape functions within
each higher-order element; a linear variation between nodes is assumed.

The spurious entropy layer generated at the stagnation point is again much reduced
with quadratic elements and even more so with cubic elements. The levels are not as low
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as those obtained for the previous subsonic test case; this is probably due to the presence
of the Discontinuity Capturing operator. What is very striking is the accuracy of the
entropy rise through the shock wave obtained with higher-order elements: the entropy
level after the shock closely matches the reference level obtained on a mesh containing
over one million nodes.
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Figure 6: MTC 2: NACA0012, M = 0.80, α = 1.25◦, inviscid. Line plots of pressure coefficient and
entropy deviation along the profile. Comparison of P1 vs P2, and P1 vs P3 results for the same numbers
of degrees of freedom.

Figure 7 presents the convergence of the drag and lift coefficients. As with MTC 1, all
higher-order meshes display a converged lift coefficient, whereas drag requires more mesh
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points. Most of the gain is obtained with third order elements. On the average, CPU
time to convergence is reduced by 80%.

# of dof per equation

C
D

103 104 105 1060.022

0.023

0.024

0.025

0.026

linear
quadratic
cubic
conv def

# of dof per equation

C
L

103 104 105 1060.33

0.34

0.35

0.36

linear
quadratic
cubic
conv def

Figure 7: MTC 2: NACA0012, M = 0.80, α = 1.25◦, inviscid. Convergence of force coefficients for P1,
P2, and P3 elements.

3.3 MTC 3: NACA0012, M = 0.50, α = 2◦, Re = 5, 000

We now come to MTC 3, one of the most interesting test cases in the selection. It
concerns the laminar computation of an airfoil. Although a Navier-Stokes test case, it
is still far from concrete industrial applications. We will see however that it exemplifies
the difficulty of getting converged Navier-Stokes solutions. One can anticipate an even
greater challenge with complex 3-D RANS computations. . .

Navier-Stokes meshes with their stretched elements along the boundary bring a specific
difficulty: extra nodes added along the boundary may produce negative elements. An
initial coarse 1533-node mesh is the starting point of all grids generated for MTC 3. The
first P2 and P3 grids contain respectively 6034 and 13,503 nodes. Four finer quadratic
grids (up to 1,521,184 nodes) and two finer cubic grids (up to 1,083,159 nodes) were
generated.

A mesh deformation technique based on linear elasticity was used to generate stretched
and curved higher-order elements close to the airfoil boundary for the Navier-Stokes cases.
Unlike the meshes built for the inviscid test cases, these meshes contains elements with
curved faces in the volume away from the airfoil surface.

Figure 8 presents pressure contours obtained on the coarsest quadratic and cubic
meshes. They are compared with results computed on corresponding linear meshes con-
taining the very same numbers of grid points. P1 results show the difficulty of preserving a
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constant pressure through an underresolved boundary layer and highly stretched elements.
This difficulty is alleviated with the increasing order of the elements.

P1 (6034 nodes) P2 (6034 nodes)

P1 (13,503 nodes) P3 (13,503 nodes)

Figure 8: MTC 3: NACA0012, M = 0.50, α = 2◦, Re = 5, 000. Pressure contours on matching P1 iso-P2
and P2 grids, and P1 iso-P3 and P3 grids.

Figure 9 presents the convergence of force coefficients: pressure drag and lift, friction
drag, and heat flux. The advantage of higher-order elements is even more blatant than for
the inviscid test cases described previously. Pressure drag and lift converge faster with
quadratic elements; cubic elements yield values close to the asymptotic limit for every
computed grid, even the coarser ones.

Unexpectedly viscous fluxes appear as a real challenge for this laminar test case. Second
order viscous drag is still not converged for the finest mesh which contains over 1.5 million
nodes: the asymptotic value is provided by the quadratic results. The magnified plot is
even more striking: linear elements have a hard time getting within one drag count of
the asymptotic value of the friction drag, whereas as all higher-order results are within
half of the same margin. Heat flux convergence plotted in log scale shows the substantial
advantage of higher-order elements. The error in heat flux (which should be zero for an
adiabatic wall condition) can be reduced by several orders of magnitude.

The number of nodes and the CPU time for convergence are again reduced with the
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order of the scheme used. Quadratic elements bring most of the reduction, except for lift
which seems to converge at a slower rate and may benefit from an element order beyond
3.

# of dof per equation

C
D

103 104 105 1060.0235

0.024

0.0245

0.025

0.0255

0.026

linear
quadratic
cubic
conv def

# of dof per equation

C
L

103 104 105 1060.036

0.038

0.04

0.042

0.044

0.046

0.048

0.05

linear
quadratic
cubic
conv def

# of dof per equation

C
Dvi

sc

103 104 105 1060.0318

0.032

0.0322

0.0324

0.0326

0.0328

0.033

0.0332

linear
quadratic
cubic
conv level

# of dof per equation

C
H

103 104 105 106-0.002

-0.0015

-0.001

-0.0005

0

0.0005

linear
quadratic
cubic
conv level

14



F. Chalot and P.-E. Normand
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Figure 9: MTC 3: NACA0012, M = 0.50, α = 2◦, Re = 5, 000. Convergence of force and heat flux
coefficients for P1, P2, and P3 elements.

Regarding CPU cost and memory requirements, we can be more specific for this partic-
ular test case. For the same number of degrees of freedom, the extra cost of P2 elements
over P1 is only 30%; P3 elements are 2 to 2.5 times as expensive as P1 elements. The over-
head due to the L2 projection can however be reduced. The rise in CPU cost is overtaken
by the drastic reduction in the number of nodes required for convergence. Consequently
the CPU time for convergence decreases with the degree of the scheme. Memory re-
quirements are mostly consumed by the implicit Jacobian matrix. Compared with linear
elements, they increase by 30% and 70% respectively for quadratic and cubic elements

3.4 MTC 5: RAE2822, M = 0.734, α = 2.79◦, Re = 6, 500, 000

The final test case deals with a transonic high Reynolds number RANS problem.
A series of P1, P2, and P3 meshes was also generated for MTC 5. The same mesh

deformation technique used for MTC 3 grids was applied to obtain stretched and curved
higher-order elements close to the airfoil boundary. Highly stretched elements are present
close to the airfoil surface and in the wake with aspect ratios up to 2 × 106!

In the numerical method described in Section 2.1, the turbulence equations are solved
in a staggered manner, with a second-order residual distribution scheme, and are weakly
coupled to the Navier-Stokes field through the turbulent viscosity µt.

As a first step, for higher-order calculations, RANS turbulent equations are solved on
an underlying P1 mesh, and thus remain second-order accurate. These first results show
the robustness of the SUPG finite element method. As for the more elementary MTC’s
(1, 2, and 3), the convergence of quadratic and cubic elements is similar to that obtained
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for linear elements with the same CFL settings. High aspect ratios do not seem to be an
issue.

Figure 10 presents Mach number contours obtained with P1, P2, and P3 elements on
matching grids. On these fairly coarse meshes, it’s hard to see any difference between the
solutions.

Figure 10: MTC 5: RAE2822, M = 0.734, α = 2.79◦, Re = 6, 500, 000. Mach number contours on
matching P1 iso-P2 and P2 grids, and P1 iso-P3 and P3 grids.

The force coefficient convergence plots are gathered in Figure 11. The open symbol
curves represent the second-, third-, and fourth-order methods described above (with a
second order turbulence model). There is no real distinction between the three schemes.
They converge at the same rate toward the same asymptotic values. Nevertheless heat
flux shows once more an indisputable advantage of higher-order elements over linear ones.
The error is smaller by as much as three orders of magnitude. There is no additional
benefit brought by cubic elements though.

In an attempt to simulate a “higher-order” turbulence model, we used the interpolation
of the µt field computed on the finest P1 mesh (2,669,536 nodes). The outcome of this
test is indicated in the different convergence plots of Fig. 11 with filled symbols. We
have only tested linear and quadratic elements. Results show that the turbulence model
has a huge impact on the convergence of force coefficients. Quadratic elements have a
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slight edge over linear elements, especially for the coarsest meshes. Heat flux convergence
is unaffected. This demonstrates the need for a higher-order turbulence model to fully
exploit in RANS computations the benefit of higher-order elements observed in inviscid
and laminar test cases.
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Figure 11: MTC 5: RAE2822, M = 0.734, α = 2.79◦, Re = 6, 500, 000. Convergence of force and heat
flux coefficients for P1, P2, and P3 elements.

4 TOWARDS INDUSTRIAL APPLICATIONS:
A FIRST HIGHER-ORDER FULL AIRCRAFT COMPUTATION

After the gradual and careful 2-D testing of quadratic and cubic triangular elements
for different flow conditions, the higher-order three-dimensional capability of the code
was checked on simple test cases such as an inviscid subsonic sphere (which showed drag
vanish with the increased order of the elements) and the ONERA M6 wing (both inviscid
and laminar). Higher-order quadratic and cubic tetrahedral meshes were obtained by
enriching a reference P1 mesh in a fashion similar to what was done in two dimensions.

Unfortunately the systematic asymptotic convergence analysis performed for 2-D test
cases is just not feasible even for these simple 3-D geometries: meshes would exceed very
quickly hundreds of millions nodes. A dedicated way to generate higher-order meshes
from scratch is really needed.

In the mean time, since all the ingredients are here, it feels nonetheless very tempting
to test a real 3-D industrial geometry. What is missing is a higher-order 3-D mesh. We
looked for the coarsest full aircraft mesh available. We found a Falcon 900EX design mesh
from a few years back, complete with vertical tail and empennage, pylons, nacelles and
S-duct. It contains “only” 2,512,073 nodes. A cut through this mesh downstream of the
wings, at the level of the engines is presented in Figure 12 in blue. One must note that
this mesh is not adjusted for drag prediction with heavy refinement in the wake regions.

We built two grids based on this reference mesh: one linear P1 iso-P2 grid, and one
quadratic P2 grid both containing 19,905,887 nodes. A cut through the linear refined
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tetrahedral mesh can be see in red in Figure 12.
The exercise has a few limitations. First the additional body nodes were not pro-

jected on the actual surface of the aircraft: all the elements have straight edges and
sub-parametric coordinate transformations are used (although everything is coded with
isoparametric transformations). As described in section 3.4, all computations were per-
formed using a second-order scheme for the turbulence equations. Only quadratic elements
were tested and on a single mesh size.

Figure 12: Falcon 900EX: M = 0.80, α = 2.0◦, Re = 14, 500, 000. Clockwise from top left: cut through
original 2,512,073-node P1 mesh (right) and corresponding uniformly refined 19,905,887-node P1 iso-P2
mesh (left); entropy contours for the original P1 mesh (right) and the uniformly refined P1 iso-P2 mesh
(left); entropy contours for the P2 mesh (right) and the uniformly refined P1 iso-P2 mesh (left).

We used respectively a 1-point integration rule for linear tetrahedra and an 8-point
rule for quadratic ones. The ratio between the number of elements of a P1 and a P2
tetrahedron mesh with the same number of nodes is 8. Consequently in principle the cost
of a residual evaluation should be similar on the P1 and P2 meshes. Due to the higher-
order coupling between degrees of freedom, the implicit Jacobian is roughly twice as big
for P2 elements. This yields an extra cost when generating the operator and during the
actual linear solve. Globally, the third-order computation is 68% more expensive than
the second-order one, using the same CFL setting. This could be reduced for instance if
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the implicit operator is not updated at each time step or if the original P1 matrix is used
(possibly at the cost of reduced robustness). The memory requirement is increased by
61%. Convergence is similar between P1 and P2 calculations with the same CFL settings.
Computations were done in parallel on an IBM Blue Gene/P using 1024 tasks.

Figure 12 presents entropy contours in vertical cuts through the aft part of the aircraft,
in the engine region, downstream of the wing. The wake of the wing is slightly more defined
in the 20-million-node P1 mesh in comparison with the original 2.5-million-node mesh.
The third order result displays a much more detailed wake and a stronger tip vortex. This
is also exemplified in Figure 1 which shows a more persistent and stronger wake in the
quadratic element result.

It is common to see discrepancies between near-field and far-field drag analyses (see
[14, 19]). The difference between these two drag evaluations is known as “spurious drag.”
In the reference 2.5-million-node P1 computation, the spurious drag amounts to 33 drag
counts (10−4). With the uniformly refined 20-million-node P1 mesh, it drops to 8 counts
which is pretty good. Drag analysis performed on the third-order solution (with standard
linear tools) indicates that the spurious drag is further reduced to just 1 count! This
preliminary drag analysis suggests that spurious drag virtually disappears with increased
order of accuracy.

5 CONCLUDING REMARKS

In this study, we have achieved:

• the implementation of higher-order (quadratic and cubic) stabilized finite elements
for compressible flows in an industrial code;

• the systematic convergence study of increasingly difficult test cases: inviscid, tran-
sonic, laminar, and turbulent flows;

• the proof that higher-order convergence can be achieved at a reasonable cost;

• the demonstration that higher-order elements are robust: same CFL rules where ap-
plied in our simulations with convergences similar to linear elements and sometimes
significantly better; high aspect ratios can be handled without difficulty;

• the verification that higher-order elements bring no particular complications in terms
of implicitation nor parallel efficiency, which is mandatory for industrial applica-
tions.

Difficulties were encountered with the RANS test cases. We believe they can be pal-
liated with a stronger higher-order coupling between the Navier-Stokes solver and the
turbulence model, or the use of a genuine higher-order scheme for solving the turbulence
equations. This is the subject of the PhD thesis of the second co-author. In the mean
time, higher-order elements might show a unique potential for Large Eddy Simulations.
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As a conclusion, we’ll comment on the transition towards industrial applications. The
extension to 3-D is readily available and has been successfully tested on a complete aircraft
configuration. To make it industrially viable, one needs a dedicated way to generate
higher-order meshes. Preliminary drag analysis shows that spurious drag is considerably
reduced by the use of higher-order elements.
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