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Abstract This chapter covers Dassault Aviation’s contribution torkymckage 3 of
the ADIGMA Project, which focuses on the extension of itbgized finite element
industrial Navier-Stokes code to higher-order elementsi/generation aspects are
treated and especially the issue of highly-stretched cLelements close to the wall
boundary of Navier-Stokes meshes. The high-order apprisacdrefully assessed
using inviscid subsonic and transonic, laminar, and higynRkls number turbulent
flows.

1 Introduction

Over the past two decades, modern CFD has gone from prodpi@ity pictures to
actually producing numbers which are crucial when imprgyire aerodynamic de-
sign of aircraft. Over this period of time, models have img@going from inviscid
Euler calculations to laminar and then turbulent Navierxk8s. Turbulent models
have evolved from purely algebraic models to RANS modelsinsteady models
like LES and DES which are slowly making their way into the usttial world
[10]. The growth of computer power has also tremendouslyétkethat change: the
power of the vector supercomputers of the 80’s is now aviglah laptop PC's,
whereas the Top500 parallel computers are flirting with a $estained Petaflops.
Most industrial CFD codes and commercial packages have thadeansition from
early developments in finite differences to finite volumes] are rapidly moving
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away from the apparent simplicity of structured and blotketured meshes to the
flexibility of unstructured meshes, often at the price ofsséx efficiency.

A large amount of work was also performed to develop stabiesaourate spatial
numerical schemes for compressible flow calculations. @ffusive first-order
schemes were rapidly abandoned for second-order accutaenss with mono-
tonic shock-capturing capabilities. Such a level of accynaroved sufficient for
most industrial codes, even for applications such as LESD#E which were at
first developed with higher-order schemes [7]. Higher-osdbemes seem reserved
for specific fields (DNS, aeroacoustics) where the enhanoaaracy is mandatory.

Today’s complex applications require an ever increasinglwer of grid points
for which mesh convergence can seemingly never be attained.

The European proje&DIGMA proposed a unique framework to address many
of the accuracy and cost issues of current industrial CF2sothe different part-
ners have put together innovative higher-order methodstwhill constitute key
ingredients for the next generation of industrial flow sodvelhe participation of
Dassault Aviation was twofold: higher-order stabilizediténelements described
in the following sections, and adjoint-based adaptive nrefhement detailed in
Chapter??.

2 Higher-order stabilized finite element schemes for the RAS
equations

Although Dassault Aviation started from the beginning witistructured meshes
and a Navier-Stokes code based on a finite element formajatie claim that finite
elements can fairly effortlessly and in a straightforwardnmer go high in order
was never fully exploited. We currently still use for all NewStokes calculations
linear elements which yield second-order accuracy [5, PASingle but successful
attempt was made to compute the flow past a supersonic ramysifj quadratic
elements.
Higher-order (8" and 4" order) finite elements in the SUPG/Galerkin-least

squares framework will be revisited. We will present our rwizal method in the
following sections and highlight the adjustments requivgdhigher-order elements.

2.1 General description of our flow solver

Dassault Aviation’s Navier-Stokes code, call®ETHER, uses a finite element ap-
proach, based on a symmetric form of the equations writteterims of entropy
variables. The advantages of this change of variables areeraus: in addition to
the strong mathematical and numerical coherence theygeddimensionally cor-
rect dot product, symmetric operators with positivity pedges, efficient precondi-



Higher-order Stabilized Finite Elements in an Industriaviér-Stokes Code 3

tioning), entropy variables yield further improvement&onthe usual conservation
variables, in particular in the context of chemically réagtlows (see [4, 5]).

The code can handle the unstructured mixture of numeroestypelements (tri-
angles and quadrilaterals in 2-D; tetrahedra, bricks, aisting in 3-D). In practice
mostly linear triangular and tetrahedral meshes are used.

Different one- and two-equation Reynolds-averaged tereg models are avail-
able: Spalart-Allmarasg-¢, K-w, K-¢, K-KL. .. These models are either integrated
down to the wall, use a two-layer approach with a low-Reysattbdelization of
the near wall region, or adopt a wall function treatment efttoundary layer. More
advanced RANS models, such as EARSM and RSM, and extensidrisS and
DES are also available (see [7], [8], and [10]).

Convergence to steady state of the compressible NaviereSteguations is
achieved through a fully-implicit iterative time-marclgiprocedure based on the
GMRES algorithm with nodal block-diagonal or incompléeU preconditioning
(see [12)]).

The code has been successfully ported on many computettearichies. It is
fully vectorized and parallelized for shared or distrititaemory machines using
the MPI message passing library (IBM SP2 Series, IBM BlueGé&anium Il- and
Xeon-based Bull NovaScale) or native parallelization cives (NEC SX-4) (see

(&)

2.2 The symmetric Navier-Stokes equations

As a starting point, we consider the compressible Navigkest equations written
in conservative form: _
Ui+ 3= F" (1)

whereU is the vector of conservative variables2® and F;9 are, respectively,
the advective and the diffusive fluxes in tH&direction. Inferior commas denote
partial differentiation and repeated indices indicate swation.

Equation (1) can be rewritten in quasi-linear form:

U+ AU, = (K;U),); (2)

where A; = Fiag‘.’ is thei" advective Jacobian matrix, ad¥ = [Kj;] is the dif-
fusivity matrix, defined byF/9" = Kj;U ;. The Aj's and K do not possess any
particular property of symmetry or positiveness.

We now introduce a new set of variables,
za
- oU

wheresZ is the generalized entropy function given by

VT
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H = U)=—ps

ands is the thermodynamic entropy per unit mass. Under the chahgariables
U — V, (2) becomes:

AVi+ AV, = (K V), (3)
where
Ay =Uy
A= AA
K = K A,

The Riemannian metric tensegk is symmetric positive-definite; thd;'s are sym-
metric; andK = [Kjj] is symmetric positive-semidefinite. In view of these prop-
erties, (3) is referred to as a symmetric advective-diffeisiystem.

For a general divariant gas, the vector of so-called (playsentropy variables,

V', reads
v u—lul?/2
= u
T 1

whereu = e+ pv— T sis the chemical potential per unit mass; 1/p is the specific
volume. More complex equations of state are treated in [&Muld like to stress
the formal similarity between the conservation variadlésand the entropy vari-
ablesV', which can be made more apparent if we write the conservatidables

in the following form:
1 1
U== u
Vilet+|u?/2

wherev = 1/p is the specific volume.

Taking the dot product of (3) with the vectdf yields the Clausius-Duhem in-
equality, which constitutes the basic nonlinear stabddpdition for the solutions of
(3). This fundamental property is inherited by appropfiateefined finite element
methods, such as the one described in the next section.

| =

2.3 The Galerkin/least-squares formulation

Originally introduced by Hughes and Johnson, the Galedast-squares (GLS)
formulation is a full space-time finite element techniqueptaying the discontinu-

ous Galerkin method in time (see [1, 13]). The least-squapesator ensures good
stability characteristics while retaining a high level etaracy. The local control
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of the solution in the vicinity of sharp gradients is furtleghanced by the use of a
nonlinear discontinuity-capturing operator.

Let Q be the spatial domain of interest andits boundary. The semi-discrete
Galerkin/least-squares variational problem can be stded

Find V" € . (trial function space), such that for 3% " ¢ ¥ (weighting
function space), the following equation holds:

[ WUV~ W BV WK V) do

Nel

+ e;/c (zW“) -r(.zvh) dQ
+ ::i/m vhg”WP-ZOVJth

= [Wr (= BV B (V). @)
r

The first and last integrals of (4) represent the Galerkimfdation written in
integrated-by-parts form to ensure conservation undarced quadrature integra-
tion.

The second integral constitutes the least-squares op&ratre.Z is defined as

~ 0 G0 J0 7= 0
L =A==+ Ai— - —(K;j—). 5
gt T e ax Mgk ®)
T is a symmetric time-scale matrix for which definitions carfdnend in [13].

The third integral is the nonlinear discontinuity-caphgrbperator, which is de-
signed to control oscillations about discontinuities,hwiit upsetting higher-order
accuracy in smooth regiong! is the contravariant metric tensor defined by

9" =1&i-€i07°

where& = £(x) is the inverse isoparametric element mapping ahds a scalar-
valued homogeneous function of the residudV . The discontinuity capturing
factor v" used for linear elements is an extension of that introduge#ibghes,
Mallet, and Shakib (see [11, 13]).

A key ingredient to the formulation is its consistency: thka solution of (1)
satisfies the variational formulation (4). This constitutan essential property in
order to attain higher-order spatial convergence.
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2.4 Extension to higher-order elements

In principle everything is contained in the weighted resildyiven by Eq. (4). There
is no new term to code, no interpolation technique specifiggber order to derive:
everything is already there. We just have to compute thgiate of (4), taking into
account the new higher-order shape functions.

The volume and surface integrals are numerically evaluati¢hd quadrature
rules. All is needed is the values of the shape functions (aeit gradients) at
the integration points. Higher-order functions only requnore precise integration
rules. In general, we use 3-, 6-, and 12-point rules, resmdgfor linear, quadratic,
and cubic triangles. They have orders of accuracy whiclgrate exactly polyno-
mials of degrees 2, 4, and 6 respectively.

For a given number of degrees of freedom, higher-order nseshietain much
fewer elements than P1 meshes. The ratio is 1/4th for gua@iaments, and 1/9th
for cubic. Although more integration points are requirdée, higher-order computa-
tion of (4) is actually cheaper. The extra cost comes fronmirtigicit linear system
which possesses a much larger bandwidth. For a regular 24db migh six triangles
connected to a given node, each line of the implicit matrintams 7, 19, and 37
non-zero blocks, respectively for P1, P2, and P3 elements.

Preliminary quadratic and cubic element results obtaingd the original sta-
bilization and discontinuity capturing term used for lineéements, appeared too
diffusive especially for MTC 2. This is an indication thaetintrinsic time scale
matrix 7 must be reduced for higher-order elements. Theoreticdlystd the 1-
D scalar advection diffusion equation showed that the agtim must indeed be
reduced in the advective limit for any higher-order elemdite shock capturing
operator must also be tuned in a similar fashion.

In fact one term in the weighted residual must be speciadigted in the context
of higher-order elements. The last term in (5) vanishes to @ linear elements.
It appears in the second integral of (4). This term must bepeged with higher-
degree shape and test functions in order to preserve cemsystin practice, it is
evaluated using ahy-projection.

One-dimensional studies showed that there was no signifitiffierences be-
tween SUPG and Galerkin/least-squares. We have chosemterminate solely on
SUPG which is easier to implement.

As a final remark, we want to stress the fact that whatever tteraf the ele-
ments, all operations remain local (viz. at the elementl)e@dnsequently higher-
order elements engender no implicitation nor paralldlireissue (see [6]).

3 Isoparametric meshes with curved boundaries

We have made the seemingly obvious choice of higher-asdgrarametric ele-
ments. One of the advantages of these elements, besidegytie-brder shape
functions, is the use of higher-order polynomials to repn¢surved boundaries.
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They only ensurec® continuity across elements, but locate all the nodes on the
actual surface.

We had thought at first that the slope discontinuity acroemeht boundaries
could be minimized by adjusting the location of the extragsdlong the sides and
the faces of elements beyond P1. In practice it is very eaget®rate negative
elements with “shamrock”-like edges if one tries to playhwitode location along
edges to optimize curvature. Consequently we sticked $nstitidy to elements with
equally distributed nodes along the edges and faces.

Fig. 1 Higher-order mesh generation for inviscid test casesimalg®1l mesh (a); P2 mesh and
corresponding P1 mesh (b and c); P3 mesh and correspondimg$ti(d and e).

All higher-order meshes were obtained by adding nodes toasseanitial P1
mesh. We had previously checked that quadratic and cubitgular meshes would
fit DASSAV data structure. Nested two-dimensional P1, P2l BB grids could
be generated with equally distributed boundary nodes. lLmade numbering was
introduced intcAETHER for cubic triangles, quadratic and cubic tetrahedra (linea
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and quadratic triangles, and linear tetrahedra were wteg). Corresponding face
numbering for boundary elements was also introduced.

ARA provided sets of unstructured linear triangular gridisthe Mandatory Test
Cases. We had to generate new series of higher-order P1n®®3ameshes. The
first meshes used for the inviscid MTC’s (1 and 2) are depiictédgure 1.

All inviscid higher-order meshes were obtained by addingesoto a coarse
1106-node P1 mesh (see Fig. 1 a). This yields a 4336-node §t2ane a 9690-node
P3 mesh. The first P2 mesh is shown in Figure 1 b, whereas itsirterpart, which
contains exactly the same number of grid points, is showngarg 1 c. Figures1d
and e show the first cubic mesh and the matching linear gridr. fioer quadratic
grids (up to 1,088,896 nodes) and two finer cubic grids (up/% 386 nodes) were
generated. All new nodes are added along the actual profils pfoduces boundary
elements with curved edges. Elements not connected to thedlaoy have straight
edges.

Fig. 2 Higher-order mesh generation for Navier-Stokes test casggnal P1 mesh (a); P2 mesh
and corresponding P1 mesh (b and c); P3 mesh and corresgddtimesh (d and e).
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a

N

Fig. 3 Mesh deformation for isoparametric higher-order mesh gaiwa for Navier-Stokes test
cases: original P1 mesh (a); P1 iso-P2 mesh before (b) agd(eftdeformation; P1 iso-P3 mesh

before (d) and after (e) deformation; in (b) and (d) actualratary represented with a bold red
line; final P2 and P3 grids (f and g).

Navier-Stokes meshes with their stretched elements aloadoundary bring
a specific difficulty: extra nodes added along the boundary pnaduce negative
elements. Figure 2 a presents the initial coarse 1533-nedh mhich is the starting
point of all grids generated for MTC 3. The corresponding408de P2 and P1
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iso-P2 grids, and 13,503-node P3 and P1 iso-P3 grids arenstespectively in
Figures 2 b—e. Four finer quadratic grids (up to 1,521,184egpdnd two finer
cubic grids (up to 1,083,159 nodes) were generated.

Figure 3 depicts the mesh deformation technique used tagengretched and
curved higher-order elements close to the airfoil boundarythe Navier-Stokes
cases. The initial grid is shown in Figure 3 a. P1 iso-P2 andsBP3 grids are
constructed with straight edges (see Figs. 3 b and d). Thierkdlline represents
the actual boundary. Figures 3 ¢ and e presents the P1 mdtgratedormation. The
corresponding P2 and P3 grids are shown in Figures 3 f and likd.the meshes
built for the inviscid test cases, these meshes containssgits with curved faces in
the volume away from the airfoil surface.

A series of P1, P2, and P3 meshes was also generated for MT@eSsdame
mesh deformation technique used for MTC 3 grids was apptiezbtain stretched
and curved higher-order elements close to the airfoil bamydHighly stretched
elements are present close to the airfoil surface and in #iewith aspect ratios
up to 2x 10°!

4 Numerical examples

Dassault Aviation computed four of the Mandatory Test Catefted in Work-
package 2 of the ADIGMA Project. They cover a wide range ofliappons: from
inviscid subsonic and transonic flows (MTC’s 1 and 2), to laaniNavier-Stokes
(MTC 3), and finally a profile in transonic turbulent conditeo(MTC 5). All four
test cases were run with the baseline second-order ver§iDassault Aviation’s
industrial Navier-Stokes codsETHER and with the revisited or newly developed
third and fourth order extensions.

4.1 MTC 1: NACA0012M = 0.50, o = 2°, inviscid

As an introductory comment, we should say that our cAHEHER is really ded-
icated to Navier-Stokes applications. It can compute Eilders but uses a strong
slip boundary condition at the nodes with the true normateéogeometry. We im-
pose a weak slip boundary condition at the trailing edge dbiég8 and in regions
where the definition of a single normal is tricky. A more natuway of imposing
the inviscid slip condition in a finite element framework dbe a weak condition
through the boundary integral everywhere. Neverthelegsdiu test cases are valu-
able since they allow the assessment of the higher-ordsglizéion operator in the
advection limit.

Higher-order MTC 1 results are compared with those obtaimatie correspond-
ing P1 mesh with the same number of nodes in Figures 4-5. Tiaaglycshow the
advantage of the increased order of accuracy brought byrgti@a@énd cubic ele-



Higher-order Stabilized Finite Elements in an Industriavi¢r-Stokes Code 11

ments. The entropy layer generated at the stagnation moimuch reduced with
quadratic elements and virtually disappears with cubimelas. This directly im-
pacts the Mach number contours which traditionally prekarks near the wall on
coarse P1 meshes. These kinks are removed from higheraaldetations, which
also present much cleaner contours for the same number téetegf freedom.

The kinks in Mach number contours observed in second-ooligtiens along the
profile are not due to a lower degree of accuracy boundaryittoner boundary
integral computation as may have been suggested, but itoftet level of spurious
entropy generated at the leading edge. Itis convected #hengrofile and affects the
solution close to the airfoil. This fact will be confirmed irn&pter??, where local
mesh refinement in the sole leading edge region suppressesptitious entropy
production.

P2 (4336 nodes) | |

[ P1 (4336 nodes) |

Fig. 4 MTC 1: NACA0012,M = 0.50, a = 2°, inviscid. Mach number contours on matching P1
iso-P2 and P2 grids, and P1 iso-P3 and P3 grids.
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P1(4336 nodes) P2 (4336 nodes)

P1 (9690 nodes) P3 (9690 nodes)

Fig. 5 MTC 1: NACA0012,M = 0.50, a = 2°, inviscid. Entropy contours on matching P1 iso-P2
and P2 grids, and P1 iso-P3 and P3 grids.

Figure 6 presents the convergence of the drag and lift cafte with respect
to the grid size given by its node number or “number of degrdefseedom per
equation.” The error bars represent the convergence defisiprovided for the test
case: when a given coefficient reaches within the error bagssolution is assumed
converged for that particular coefficient.

We can notice a dramatic increase in convergence rate witottler of the
scheme. Lift is converged for every tested higher-orderhndsag requires more
effort, and may still gain from an increase in scheme ordgobd 4 as shown in
the last plots of Figure 6. Even CPU time shows a gain with s&herder (note
that a few higher-order values in these plots have beenpattied). The times for
convergence are scaled by the corresponding time for lielearents.
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Fig. 6 MTC 1: NACA0012,M = 0.50, o = 2°, inviscid. Convergence of force coefficients for P1,
P2, and P3 elements; estimated numbers of degrees of fremabtimes for convergence.

4.2 MTC 2: NACA0012M = 0.80, o = 1.25°, inviscid

MTC 2 is a transonic inviscid test case. It is interestingt$nown respect, since it
can challenge the ability of higher-order elements to tsbatcks with the help of
the discontinuity capturing operator.

Figure 7 shows Mach number contours on the same set of meskesfor
MTC 1. In spite of the presence of the shock wave, no obviogsatfation in the
solution quality can be observed. P3 elements even prodheckdst result with a
well resolved slip line and a captured windward-side wealckh

Entropy contours displayed in Figure 8 show a reductionémpttoduction of spu-
rious leading-edge entropy similar to MTC 1. However the@y rise through the
normal shock does not look as controlled with higher-ortements. The perturba-
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Fig. 7 MTC 2: NACA0012,M = 0.80, o = 1.25°, inviscid. Mach number contours on matching
P1iso-P2 and P2 grids, and P1 iso-P3 and P3 grids.

P1 (4336 nodes) P2 (4336 nodes)

P1 (9690 nodes) P3 (9690 nodes)

Fig. 8 MTC 2: NACA0012,M = 0.80, o = 1.25°, inviscid. Entropy contours on matching P1
iso-P2 and P2 grids, and P1 iso-P3 and P3 grids.

tions remain local though, thanks to the SUPG operator. Metieall these contours
are plotted on P1 meshes. Actual higher-order contourstrbgsmoother.
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Fig. 9 MTC 2: NACA0012,M = 0.80, a = 1.25°, inviscid. Convergence of force coefficients for
P1, P2, and P3 elements; estimated numbers of degrees adrinegnd times for convergence.

Figure 9 presents the convergence of the drag and lift casife As with
MTC 1, all higher-order meshes display a converged lift ficieiht, whereas drag
requires more mesh points. The last two plots in Fig. 9 inditaat most of the gain
is obtained with third order elements. On the average, CRlg tb convergence is
reduced by 80%.

4.3 MTC 3: NACA0012M = 0.50, o = 2°, Re= 5,000

We now come to MTC 3, one of the most interesting test casekersélection.

It concerns the laminar computation of an airfoil. AlthougNavier-Stokes test
case, it is still far from concrete industrial applicatiokge will see however that
it exemplifies the difficulty of getting converged NavieeBés solutions. One can
anticipate an even greater challenge with complex 3-D RAbI8utations. ..
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Figure 10 presents pressure contours obtained on the sbguealratic and cubic
meshes. They are compared with results computed on corrésplinear meshes
containing the very same numbers of grid points. P1 reshttsvghe difficulty of
preserving a constant pressure through an underresolveatiboy layer and highly
stretched elements. This difficulty is alleviated with thereasing order of the ele-
ments.

P1 (6034 nodes) P2 (6034 nodes)

P3 (13,503 nodes)

Fig. 10 MTC 3: NACA0012,M = 0.50, a = 2°, Re=5,000. Pressure contours on matching P1
iso-P2 and P2 grids, and P1 iso-P3 and P3 grids.

Figure 11 presents the convergence of force coefficienéssprre drag and lift,
friction drag, and heat flux. The advantage of higher-ordements is even more
blatant than for the inviscid test cases described prelyioBsessure drag and lift
converge faster with quadratic elements; cubic elemermtsl yialues close to the
asymptotic limit for every computed grid, even the coarsern

Unexpectedly viscous fluxes appear as a real challengeifdathinar test case.
Second order viscous drag is still not converged for the fimesh which contains
over 1.5 million nodes: the asymptotic value is providedi®g/quadratic results. The
magnified plotis even more striking: linear elements havard time getting within
one drag count of the asymptotic value of the friction drabeweas as all higher-
order results are within half of the same margin. Heat fluxveogence plotted in
log scale shows the substantial advantage of higher-otderemts. The error in
heat flux (which should be zero for an adiabatic wall conditican be reduced by
several orders of magnitude.

The number of nodes and the CPU time for convergence are seghioed with
the order of the scheme used. Quadratic elements bring hth&t ieduction, except
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for lift which seems to converge at a slower rate and may biefnefn an element
order beyond 3.
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Fig. 11 MTC 3: NACA0012,M = 0.50, a = 2°, Re= 5,000. Convergence of force and heat flux
coefficients for P1, P2, and P3 elements; estimated numbelegoees of freedom and times for
convergence.

Regarding CPU cost and memory requirements, we can be mec#isior this
particular test case. For the same number of degrees ofdireetie extra cost of
P2 elements over P1 is only 30%; P3 elements are 2 to 2.5 timegpmensive as
P1 elements. The overhead due to ltheprojection can be reduced. The CPU cost
increase is overtaken by the drastic reduction in the nurabeodes required for
convergence. Consequently the CPU time for convergenceases with the degree
of the scheme. Memory requirements are mostly due to thedgimjkhcobian matrix.
They respectively gain 30% and 70% for quadratic and culeimehts.

4.4 MTC 5: RAE2822M =0.734 a = 2.79°, Re= 6,500, 000

The final test case deals with a transonic high Reynolds nuRABIS problem.

In the numerical method described in Section 2.1, the terieé equations are
solved in a staggered manner, with a second-order resigiigbdtion scheme, and
are weakly coupled to the Navier-Stokes field through thieulent viscosityp;.

As a first step, for higher-order calculations, RANS turbtlequations are
solved on an underlying P1 mesh, and thus remain second acderate. These
first results show the robustness of the SUPG finite elemettiade As for the
more elementary MTC’s (1, 2, and 3), the convergence of qimdand cubic el-
ements is similar to that obtained for linear elements whith same CFL settings.
High aspect ratios (up to:2 10° in the considered set of meshes) do not seem to be
an issue.

Figure 12 presents Mach number contours obtained with BBriP3 elements
on matching grids. On these fairly coarse meshes, it's haugkée any difference
between the solutions.
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Fig. 12 MTC 5: RAE2822,M = 0.734,a = 2.79°, Re= 6,500,000. Mach number contours on
matching P1 iso-P2 and P2 grids, and P1 iso-P3 and P3 grids.

The force coefficient convergence plots are gathered inrEigy8. The open sym-
bol curves represent the second-, third-, and fourth-artethods described above
(with a second order turbulence model). There is no reaindisbn between the
three schemes. They converge at the same rate toward theasgmptotic values.
Nevertheless heat flux shows once more an indisputable tady@nf higher-order
elements over linear ones. The error is smaller by as mudtres brders of mag-
nitude. There is no additional benefit brought by cubic eleiméhough.

In an attempt to simulate a “higher-order” turbulence moded used the in-
terpolation of thew; field computed on the finest P1 mesh (2,669,536 nodes). The
outcome of this test is indicated in the different convergeplots of Fig. 13 with
filled symbols. We have only tested linear and quadratic efés Results show that
the turbulence model has a huge impact on the convergenceasf oefficients.
Quadratic elements have a slight edge over linear elemesyscially for the coars-
est meshes. Heat flux convergence is unaffected. This deratenthe need for a
higher-order turbulence model to fully exploitin RANS comt@tions the benefit of
higher-order elements observed in inviscid and lamindrcases.
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Fig. 13 MTC 5: RAE2822,M = 0.734, a0 = 2.79°, Re= 6,500,000. Convergence of force and
heat flux coefficients for P1, P2, and P3 elements.
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4.5 Concluding remarks on numerical test cases

In this study, many firsts have been accomplished:

e the implementation of higher-order (quadratic and cubiapiized finite ele-
ments for compressible flows in an industrial code;

e the systematic convergence study of increasingly diffitedt cases: inviscid,
transonic, laminar, and turbulent flows;

¢ the proof that higher-order convergence can be achievedeatsanable cost;

e the demonstration that higher-order elements are robaiste CFL rules where
applied in our simulations with convergences similar te#n elements and
sometimes significantly better;

e the verification that higher-order elements bring no paléiccomplications in
terms of implicitation nor parallel efficiency.

Difficulties were encountered with the RANS test cases. We®they can be
palliated with a stronger higher-order coupling betweemn Navier-Stokes solver
and the turbulence model, or the use of a genuine higher-sotieme for solving
the turbulence equations.

5 Towards industrial applications

As a conclusion we’ll comment on the transition towards stdal applications.

The extension to 3-D is readily available. To make it indadlir viable, one needs
a dedicated way to generate higher-order meshes. Enri€tiingeshes yields way
too fine higher-order mesh sets in 2-D. This is even more trgeb.

The cost of higher-order elements is reasonable (at mostarfaf 2 for P3 with
the same number of dof’s), and it can be worked upon.

Higher-order elements can handle high aspect ratios and €&tis as the stan-
dard second-order scheme with convergences often bedtemtith linear elements.
They engender no implicit, nor parallel issue, which is metndy for industrial ap-
plications.

The coupling with RANS turbulence model must be improvedhBimean time,
higher-order elements might show a unique potential foged&ddy Simulations.



22 Frédeéric Chalot and Pierre-Elie Normand

References

1. AN. Brooks and T.T.R. Hughes. Streamline Upwind Petrae@in formulation for convec-
tion dominated flows with particular emphasis on the incarapible Navier-Stokes equations.
Computer Methods in Applied Mechanics and Engineerifad. 32, pp 199-259, 1982.

2. F. Chalot, T.J.R. Hughes, Z. Johan, and F. Shakib, Agpmicaf the Galerkin/least-squares for-
mulation to the analysis of hypersonic flows. I: Flow over a{simensional ramg-ypersonic
Flows for Reentry Problems. Volume II: Test Cases — Expettisrend Computation®roceed-
ings of a Workshop held in Antibes, France, 22—-25 Januar1Sfringer Verlag, pp 181-200,
1991.

3. F. Chalot, T.J.R. Hughes, and F. Shakib. Symmetrizatfoconservation laws with entropy
for high-temperature hypersonic computatio@mputing Systems in Engineeringl. 1,
pp. 465-521, 1990.

4. F. Chalot and T.J.R. Hughes. A consistent equilibriumnukgy algorithm for hypersonic
flows. Computer Methods in Applied Mechanics and Engineening.112, pp. 25-40, 1994.

5. F. Chalot, M. Mallet, and M. Ravachol. A comprehensivetéidlement Navier-Stokes solver
for low- and high-speed aircraft design. Paper #94-081AA 32nd Aerospace Sciences Meet-
ing. Reno, NV, January 10-13, 1994.

6. F. Chalot, Q.V. Dinh, M. Mallet, A. Naim, and M. Ravach&. multi-platform shared- or
distributed-memory Navier-Stokes coéRarallel CFD ‘97.Manchester, UK, May 19-21, 1997.

7. F. Chalot, B. Marquez, M. Ravachol, F. Ducros, F. Nicoudj &. Poinsot. A consistent Fi-
nite Element approach to Large Eddy Simulation. Paper #3B22AIAA 29th Fluid Dynamics
ConferenceAlbuquerque, NM, June 15-18, 1998.

8. F. Chalot, B. Marquez, M. Ravachol, F. Ducros, and T. Riinsarge Eddy Simulation of
a compressible mixing layer: study of the mixing enhancemieaper #99-3358AIAA 14th
Computational Fluid Dynamics Conferend¢orfolk, VA, June 28-July 1, 1999.

9. F. Chalot, Industrial aerodynamidsncyclopedia of Computational Mechanisé®l. 3, Com-
putational Fluid Dynamics, chapter 12, E. Stein, R. de Bawstl T.J.R. Hughes editors, Wiley,
2004.

10. F. Chalot, V. Levasseur, M. Mallet, G. Petit, and N. R&8aES and DES simulations for
aircraft design. Paper #2007-072&th AIAA Aerospace Sciences Meeting and ExHi@ho,
NV, January 8-11, 2007.

11. T.J.R. Hughes and M. Mallet. A new finite element formiolafor computational fluid dy-
namics: IV A discontinuity-capturing operator for multickensional advective - diffusive sys-
tems.Comp. Meth. in Applied Mech. and Engpl. 58, pp. 329-336, 1986.

12. F. Shakib, T.J.R. Hughes, and Z. Johan. A multi-elemesigpreconditioned GMRES al-
gorithm for nonsymmetric systems arising in finite elememilgsis. Computer Methods in
Applied Mechanics and Engineeringol. 75, pp 415-456, 1989.

13. F. Shakib, T.J.R. Hughes, and Z. Johan. A new finite elefoemulation for computational
fluid dynamics: X. The compressible Euler and Navier-St@asationsComputer Methods in
Applied Mechanics and Engineeringol. 89, pp 141-219, 1991.



