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Abstract This chapter covers Dassault Aviation’s contribution to Workpackage 3 of
the ADIGMA Project, which focuses on the extension of its stabilized finite element
industrial Navier-Stokes code to higher-order elements. Mesh generation aspects are
treated and especially the issue of highly-stretched curved elements close to the wall
boundary of Navier-Stokes meshes. The high-order approachis carefully assessed
using inviscid subsonic and transonic, laminar, and high Reynolds number turbulent
flows.

1 Introduction

Over the past two decades, modern CFD has gone from producingpretty pictures to
actually producing numbers which are crucial when improving the aerodynamic de-
sign of aircraft. Over this period of time, models have improved going from inviscid
Euler calculations to laminar and then turbulent Navier-Stokes. Turbulent models
have evolved from purely algebraic models to RANS models, tounsteady models
like LES and DES which are slowly making their way into the industrial world
[10]. The growth of computer power has also tremendously helped that change: the
power of the vector supercomputers of the 80’s is now available on laptop PC’s,
whereas the Top500 parallel computers are flirting with a fewsustained Petaflops.
Most industrial CFD codes and commercial packages have madethe transition from
early developments in finite differences to finite volumes, and are rapidly moving
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away from the apparent simplicity of structured and block-structured meshes to the
flexibility of unstructured meshes, often at the price of a lesser efficiency.

A large amount of work was also performed to develop stable and accurate spatial
numerical schemes for compressible flow calculations. Overly diffusive first-order
schemes were rapidly abandoned for second-order accurate schemes with mono-
tonic shock-capturing capabilities. Such a level of accuracy proved sufficient for
most industrial codes, even for applications such as LES andDES which were at
first developed with higher-order schemes [7]. Higher-order schemes seem reserved
for specific fields (DNS, aeroacoustics) where the enhanced accuracy is mandatory.

Today’s complex applications require an ever increasing number of grid points
for which mesh convergence can seemingly never be attained.

The European projectADIGMA proposed a unique framework to address many
of the accuracy and cost issues of current industrial CFD codes. The different part-
ners have put together innovative higher-order methods which will constitute key
ingredients for the next generation of industrial flow solvers. The participation of
Dassault Aviation was twofold: higher-order stabilized finite elements described
in the following sections, and adjoint-based adaptive meshrefinement detailed in
Chapter??.

2 Higher-order stabilized finite element schemes for the RANS
equations

Although Dassault Aviation started from the beginning withunstructured meshes
and a Navier-Stokes code based on a finite element formulation, the claim that finite
elements can fairly effortlessly and in a straightforward manner go high in order
was never fully exploited. We currently still use for all Navier-Stokes calculations
linear elements which yield second-order accuracy [5, 9, 10]. A single but successful
attempt was made to compute the flow past a supersonic ramp [2]using quadratic
elements.

Higher-order (3rd and 4th order) finite elements in the SUPG/Galerkin-least
squares framework will be revisited. We will present our numerical method in the
following sections and highlight the adjustments requiredby higher-order elements.

2.1 General description of our flow solver

Dassault Aviation’s Navier-Stokes code, calledAETHER, uses a finite element ap-
proach, based on a symmetric form of the equations written interms of entropy
variables. The advantages of this change of variables are numerous: in addition to
the strong mathematical and numerical coherence they provide (dimensionally cor-
rect dot product, symmetric operators with positivity properties, efficient precondi-
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tioning), entropy variables yield further improvements over the usual conservation
variables, in particular in the context of chemically reacting flows (see [4, 5]).

The code can handle the unstructured mixture of numerous types of elements (tri-
angles and quadrilaterals in 2-D; tetrahedra, bricks, and prisms in 3-D). In practice
mostly linear triangular and tetrahedral meshes are used.

Different one- and two-equation Reynolds-averaged turbulence models are avail-
able: Spalart-Allmaras,K-ε, K-ω , K-ℓ, K-KL. . . These models are either integrated
down to the wall, use a two-layer approach with a low-Reynolds modelization of
the near wall region, or adopt a wall function treatment of the boundary layer. More
advanced RANS models, such as EARSM and RSM, and extensions to LES and
DES are also available (see [7], [8], and [10]).

Convergence to steady state of the compressible Navier Stokes equations is
achieved through a fully-implicit iterative time-marching procedure based on the
GMRES algorithm with nodal block-diagonal or incompleteLDU preconditioning
(see [12]).

The code has been successfully ported on many computer architectures. It is
fully vectorized and parallelized for shared or distributed memory machines using
the MPI message passing library (IBM SP2 Series, IBM BlueGene, Itanium II- and
Xeon-based Bull NovaScale) or native parallelization directives (NEC SX-4) (see
[6]).

2.2 The symmetric Navier-Stokes equations

As a starting point, we consider the compressible Navier-stokes equations written
in conservative form: U,t +F adv

i,i =F diff
i,i (1)

whereU is the vector of conservative variables;F adv
i andF diff

i are, respectively,
the advective and the diffusive fluxes in theith-direction. Inferior commas denote
partial differentiation and repeated indices indicate summation.

Equation (1) can be rewritten in quasi-linear form:U,t +AiU,i = (Ki jU, j),i (2)

whereAi = F adv
i,U

is the ith advective Jacobian matrix, andK = [Ki j ] is the dif-

fusivity matrix, defined byF diff
i =Ki jU, j . TheAi ’s andK do not possess any

particular property of symmetry or positiveness.
We now introduce a new set of variables,V T =

∂H

∂U
whereH is the generalized entropy function given by
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H = H (U ) = −ρs

ands is the thermodynamic entropy per unit mass. Under the changeof variablesU 7→V , (2) becomes: Ã0V,t +ÃiV,i = (K̃i jV, j),i (3)

where Ã0 = U,VÃi = AiÃ0K̃i j = Ki j Ã0.

The Riemannian metric tensor̃A0 is symmetric positive-definite; thẽAi ’s are sym-

metric; andK̃ = [K̃i j ] is symmetric positive-semidefinite. In view of these prop-
erties, (3) is referred to as a symmetric advective-diffusive system.

For a general divariant gas, the vector of so-called (physical) entropy variables,V , reads V =
1
T





µ −|u|2/2u
−1





whereµ = e+ pv−Tsis the chemical potential per unit mass;v= 1/ρ is the specific
volume. More complex equations of state are treated in [3]. We would like to stress
the formal similarity between the conservation variablesU and the entropy vari-
ablesV , which can be made more apparent if we write the conservationvariables
in the following form: U =

1
v





1u
e+ |u|2/2





wherev = 1/ρ is the specific volume.
Taking the dot product of (3) with the vectorV yields the Clausius-Duhem in-

equality, which constitutes the basic nonlinear stabilitycondition for the solutions of
(3). This fundamental property is inherited by appropriately defined finite element
methods, such as the one described in the next section.

2.3 The Galerkin/least-squares formulation

Originally introduced by Hughes and Johnson, the Galerkin/least-squares (GLS)
formulation is a full space-time finite element technique employing the discontinu-
ous Galerkin method in time (see [1, 13]). The least-squaresoperator ensures good
stability characteristics while retaining a high level of accuracy. The local control
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of the solution in the vicinity of sharp gradients is furtherenhanced by the use of a
nonlinear discontinuity-capturing operator.

Let Ω be the spatial domain of interest andΓ its boundary. The semi-discrete
Galerkin/least-squares variational problem can be statedas:

FindV h ∈ S
h (trial function space), such that for allW h ∈ V

h (weighting
function space), the following equation holds:

∫

Ω

(
Wh ·U,t(V h) −W h

,i ·F adv
i (V h)+W h

,i ·K̃i jV h
, j

)
dΩ

+
nel

∑
e=1

∫

Ωe

(
LW h

)
·�(

LV h
)

dΩ

+
nel

∑
e=1

∫

Ωe
νhgi jW h

,i ·Ã0V h
, j dΩ

=

∫

Γ
W h ·

(
−F adv

i (V h)+F diff
i (V h)

)
ni dΓ . (4)

The first and last integrals of (4) represent the Galerkin formulation written in
integrated-by-parts form to ensure conservation under reduced quadrature integra-
tion.

The second integral constitutes the least-squares operator whereL is defined as

L = Ã0
∂
∂ t

+Ãi
∂

∂xi
−

∂
∂xi

(K̃i j
∂

∂x j
). (5)� is a symmetric time-scale matrix for which definitions can befound in [13].

The third integral is the nonlinear discontinuity-capturing operator, which is de-
signed to control oscillations about discontinuities, without upsetting higher-order
accuracy in smooth regions.gi j is the contravariant metric tensor defined by

[gi j ] = [�,i ·�, j ]
−1

where� = �(x) is the inverse isoparametric element mapping andνh is a scalar-
valued homogeneous function of the residualLV h. The discontinuity capturing
factor νh used for linear elements is an extension of that introduced by Hughes,
Mallet, and Shakib (see [11, 13]).

A key ingredient to the formulation is its consistency: the exact solution of (1)
satisfies the variational formulation (4). This constitutes an essential property in
order to attain higher-order spatial convergence.
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2.4 Extension to higher-order elements

In principle everything is contained in the weighted residual given by Eq. (4). There
is no new term to code, no interpolation technique specific tohigher order to derive:
everything is already there. We just have to compute the integrals of (4), taking into
account the new higher-order shape functions.

The volume and surface integrals are numerically evaluatedwith quadrature
rules. All is needed is the values of the shape functions (andtheir gradients) at
the integration points. Higher-order functions only require more precise integration
rules. In general, we use 3-, 6-, and 12-point rules, respectively for linear, quadratic,
and cubic triangles. They have orders of accuracy which integrate exactly polyno-
mials of degrees 2, 4, and 6 respectively.

For a given number of degrees of freedom, higher-order meshes contain much
fewer elements than P1 meshes. The ratio is 1/4th for quadratic elements, and 1/9th
for cubic. Although more integration points are required, the higher-order computa-
tion of (4) is actually cheaper. The extra cost comes from theimplicit linear system
which possesses a much larger bandwidth. For a regular 2-D mesh with six triangles
connected to a given node, each line of the implicit matrix contains 7, 19, and 37
non-zero blocks, respectively for P1, P2, and P3 elements.

Preliminary quadratic and cubic element results obtained with the original sta-
bilization and discontinuity capturing term used for linear elements, appeared too
diffusive especially for MTC 2. This is an indication that the intrinsic time scale
matrix � must be reduced for higher-order elements. Theoretical study of the 1-
D scalar advection diffusion equation showed that the optimal � must indeed be
reduced in the advective limit for any higher-order element. The shock capturing
operator must also be tuned in a similar fashion.

In fact one term in the weighted residual must be specially treated in the context
of higher-order elements. The last term in (5) vanishes to zero for linear elements.
It appears in the second integral of (4). This term must be computed with higher-
degree shape and test functions in order to preserve consistency. In practice, it is
evaluated using anL2-projection.

One-dimensional studies showed that there was no significant differences be-
tween SUPG and Galerkin/least-squares. We have chosen to concentrate solely on
SUPG which is easier to implement.

As a final remark, we want to stress the fact that whatever the order of the ele-
ments, all operations remain local (viz. at the element level). Consequently higher-
order elements engender no implicitation nor parallelization issue (see [6]).

3 Isoparametric meshes with curved boundaries

We have made the seemingly obvious choice of higher-orderisoparametric ele-
ments. One of the advantages of these elements, besides the higher-order shape
functions, is the use of higher-order polynomials to represent curved boundaries.
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They only ensureC0 continuity across elements, but locate all the nodes on the
actual surface.

We had thought at first that the slope discontinuity across element boundaries
could be minimized by adjusting the location of the extra nodes along the sides and
the faces of elements beyond P1. In practice it is very easy togenerate negative
elements with “shamrock”-like edges if one tries to play with node location along
edges to optimize curvature. Consequently we sticked in this study to elements with
equally distributed nodes along the edges and faces.

a

b c

d e

Fig. 1 Higher-order mesh generation for inviscid test cases: original P1 mesh (a); P2 mesh and
corresponding P1 mesh (b and c); P3 mesh and corresponding P1mesh (d and e).

All higher-order meshes were obtained by adding nodes to a coarse initial P1
mesh. We had previously checked that quadratic and cubic triangular meshes would
fit DASSAV data structure. Nested two-dimensional P1, P2, and P3 grids could
be generated with equally distributed boundary nodes. Local node numbering was
introduced intoAETHER for cubic triangles, quadratic and cubic tetrahedra (linear
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and quadratic triangles, and linear tetrahedra were preexisting). Corresponding face
numbering for boundary elements was also introduced.

ARA provided sets of unstructured linear triangular grids for the Mandatory Test
Cases. We had to generate new series of higher-order P1, P2, and P3 meshes. The
first meshes used for the inviscid MTC’s (1 and 2) are depictedin Figure 1.

All inviscid higher-order meshes were obtained by adding nodes to a coarse
1106-node P1 mesh (see Fig. 1 a). This yields a 4336-node P2 mesh and a 9690-node
P3 mesh. The first P2 mesh is shown in Figure 1 b, whereas its P1 counterpart, which
contains exactly the same number of grid points, is shown in Figure 1 c. Figures 1 d
and e show the first cubic mesh and the matching linear grid. Four finer quadratic
grids (up to 1,088,896 nodes) and two finer cubic grids (up to 775,386 nodes) were
generated. All new nodes are added along the actual profile. This produces boundary
elements with curved edges. Elements not connected to the boundary have straight
edges.

a

b c

d e

Fig. 2 Higher-order mesh generation for Navier-Stokes test cases: original P1 mesh (a); P2 mesh
and corresponding P1 mesh (b and c); P3 mesh and corresponding P1 mesh (d and e).
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a

b c

d e

f g

Fig. 3 Mesh deformation for isoparametric higher-order mesh generation for Navier-Stokes test
cases: original P1 mesh (a); P1 iso-P2 mesh before (b) and after (c) deformation; P1 iso-P3 mesh
before (d) and after (e) deformation; in (b) and (d) actual boundary represented with a bold red
line; final P2 and P3 grids (f and g).

Navier-Stokes meshes with their stretched elements along the boundary bring
a specific difficulty: extra nodes added along the boundary may produce negative
elements. Figure 2 a presents the initial coarse 1533-node mesh which is the starting
point of all grids generated for MTC 3. The corresponding 6034-node P2 and P1
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iso-P2 grids, and 13,503-node P3 and P1 iso-P3 grids are shown respectively in
Figures 2 b–e. Four finer quadratic grids (up to 1,521,184 nodes) and two finer
cubic grids (up to 1,083,159 nodes) were generated.

Figure 3 depicts the mesh deformation technique used to generate stretched and
curved higher-order elements close to the airfoil boundaryfor the Navier-Stokes
cases. The initial grid is shown in Figure 3 a. P1 iso-P2 and P1iso-P3 grids are
constructed with straight edges (see Figs. 3 b and d). The bold red line represents
the actual boundary. Figures 3 c and e presents the P1 meshes after deformation. The
corresponding P2 and P3 grids are shown in Figures 3 f and g. Unlike the meshes
built for the inviscid test cases, these meshes contains elements with curved faces in
the volume away from the airfoil surface.

A series of P1, P2, and P3 meshes was also generated for MTC 5. The same
mesh deformation technique used for MTC 3 grids was applied to obtain stretched
and curved higher-order elements close to the airfoil boundary. Highly stretched
elements are present close to the airfoil surface and in the wake with aspect ratios
up to 2×106!

4 Numerical examples

Dassault Aviation computed four of the Mandatory Test Casesdefined in Work-
package 2 of the ADIGMA Project. They cover a wide range of applications: from
inviscid subsonic and transonic flows (MTC’s 1 and 2), to laminar Navier-Stokes
(MTC 3), and finally a profile in transonic turbulent conditions (MTC 5). All four
test cases were run with the baseline second-order version of Dassault Aviation’s
industrial Navier-Stokes codeAETHER and with the revisited or newly developed
third and fourth order extensions.

4.1 MTC 1: NACA0012,M = 0.50, α = 2◦, inviscid

As an introductory comment, we should say that our codeAETHER is really ded-
icated to Navier-Stokes applications. It can compute Eulerflows but uses a strong
slip boundary condition at the nodes with the true normals tothe geometry. We im-
pose a weak slip boundary condition at the trailing edge of airfoils and in regions
where the definition of a single normal is tricky. A more natural way of imposing
the inviscid slip condition in a finite element framework would be a weak condition
through the boundary integral everywhere. Nevertheless inviscid test cases are valu-
able since they allow the assessment of the higher-order stabilization operator in the
advection limit.

Higher-order MTC 1 results are compared with those obtainedon the correspond-
ing P1 mesh with the same number of nodes in Figures 4–5. They clearly show the
advantage of the increased order of accuracy brought by quadratic and cubic ele-
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ments. The entropy layer generated at the stagnation point is much reduced with
quadratic elements and virtually disappears with cubic elements. This directly im-
pacts the Mach number contours which traditionally presentkinks near the wall on
coarse P1 meshes. These kinks are removed from higher-ordercalculations, which
also present much cleaner contours for the same number of degrees of freedom.

The kinks in Mach number contours observed in second-order solutions along the
profile are not due to a lower degree of accuracy boundary condition or boundary
integral computation as may have been suggested, but in factto the level of spurious
entropy generated at the leading edge. It is convected alongthe profile and affects the
solution close to the airfoil. This fact will be confirmed in Chapter??, where local
mesh refinement in the sole leading edge region suppresses the spurious entropy
production.

P1 (4336 nodes) P2 (4336 nodes)

P1 (9690 nodes) P3 (9690 nodes)

Fig. 4 MTC 1: NACA0012,M = 0.50, α = 2◦, inviscid. Mach number contours on matching P1
iso-P2 and P2 grids, and P1 iso-P3 and P3 grids.



12 Frédéric Chalot and Pierre-Elie Normand

P1 (4336 nodes) P2 (4336 nodes)

P1 (9690 nodes) P3 (9690 nodes)

Fig. 5 MTC 1: NACA0012,M = 0.50,α = 2◦, inviscid. Entropy contours on matching P1 iso-P2
and P2 grids, and P1 iso-P3 and P3 grids.

Figure 6 presents the convergence of the drag and lift coefficients with respect
to the grid size given by its node number or “number of degreesof freedom per
equation.” The error bars represent the convergence definitions provided for the test
case: when a given coefficient reaches within the error bars,the solution is assumed
converged for that particular coefficient.

We can notice a dramatic increase in convergence rate with the order of the
scheme. Lift is converged for every tested higher-order mesh; drag requires more
effort, and may still gain from an increase in scheme order beyond 4 as shown in
the last plots of Figure 6. Even CPU time shows a gain with scheme order (note
that a few higher-order values in these plots have been extrapolated). The times for
convergence are scaled by the corresponding time for linearelements.
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Fig. 6 MTC 1: NACA0012,M = 0.50,α = 2◦, inviscid. Convergence of force coefficients for P1,
P2, and P3 elements; estimated numbers of degrees of freedomand times for convergence.

4.2 MTC 2: NACA0012,M = 0.80, α = 1.25◦, inviscid

MTC 2 is a transonic inviscid test case. It is interesting in its own respect, since it
can challenge the ability of higher-order elements to treatshocks with the help of
the discontinuity capturing operator.

Figure 7 shows Mach number contours on the same set of meshes used for
MTC 1. In spite of the presence of the shock wave, no obvious degradation in the
solution quality can be observed. P3 elements even produce the best result with a
well resolved slip line and a captured windward-side weak shock.

Entropy contours displayed in Figure 8 show a reduction in the production of spu-
rious leading-edge entropy similar to MTC 1. However the entropy rise through the
normal shock does not look as controlled with higher-order elements. The perturba-



14 Frédéric Chalot and Pierre-Elie Normand

P1 (4336 nodes) P2 (4336 nodes)

P1 (9690 nodes) P3 (9690 nodes)

Fig. 7 MTC 2: NACA0012,M = 0.80, α = 1.25◦, inviscid. Mach number contours on matching
P1 iso-P2 and P2 grids, and P1 iso-P3 and P3 grids.

P1 (4336 nodes) P2 (4336 nodes)

P1 (9690 nodes) P3 (9690 nodes)

Fig. 8 MTC 2: NACA0012,M = 0.80, α = 1.25◦, inviscid. Entropy contours on matching P1
iso-P2 and P2 grids, and P1 iso-P3 and P3 grids.

tions remain local though, thanks to the SUPG operator. Notethat all these contours
are plotted on P1 meshes. Actual higher-order contours might be smoother.
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Fig. 9 MTC 2: NACA0012,M = 0.80,α = 1.25◦, inviscid. Convergence of force coefficients for
P1, P2, and P3 elements; estimated numbers of degrees of freedom and times for convergence.

Figure 9 presents the convergence of the drag and lift coefficients. As with
MTC 1, all higher-order meshes display a converged lift coefficient, whereas drag
requires more mesh points. The last two plots in Fig. 9 indicate that most of the gain
is obtained with third order elements. On the average, CPU time to convergence is
reduced by 80%.

4.3 MTC 3: NACA0012,M = 0.50, α = 2◦, Re= 5,000

We now come to MTC 3, one of the most interesting test cases in the selection.
It concerns the laminar computation of an airfoil. Althougha Navier-Stokes test
case, it is still far from concrete industrial applications. We will see however that
it exemplifies the difficulty of getting converged Navier-Stokes solutions. One can
anticipate an even greater challenge with complex 3-D RANS computations. . .
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Figure 10 presents pressure contours obtained on the coarsest quadratic and cubic
meshes. They are compared with results computed on corresponding linear meshes
containing the very same numbers of grid points. P1 results show the difficulty of
preserving a constant pressure through an underresolved boundary layer and highly
stretched elements. This difficulty is alleviated with the increasing order of the ele-
ments.

P1 (6034 nodes) P2 (6034 nodes)

P1 (13,503 nodes) P3 (13,503 nodes)

Fig. 10 MTC 3: NACA0012,M = 0.50, α = 2◦, Re= 5,000. Pressure contours on matching P1
iso-P2 and P2 grids, and P1 iso-P3 and P3 grids.

Figure 11 presents the convergence of force coefficients: pressure drag and lift,
friction drag, and heat flux. The advantage of higher-order elements is even more
blatant than for the inviscid test cases described previously. Pressure drag and lift
converge faster with quadratic elements; cubic elements yield values close to the
asymptotic limit for every computed grid, even the coarser ones.

Unexpectedly viscous fluxes appear as a real challenge for this laminar test case.
Second order viscous drag is still not converged for the finest mesh which contains
over 1.5 million nodes: the asymptotic value is provided by the quadratic results. The
magnified plot is even more striking: linear elements have a hard time getting within
one drag count of the asymptotic value of the friction drag, whereas as all higher-
order results are within half of the same margin. Heat flux convergence plotted in
log scale shows the substantial advantage of higher-order elements. The error in
heat flux (which should be zero for an adiabatic wall condition) can be reduced by
several orders of magnitude.

The number of nodes and the CPU time for convergence are againreduced with
the order of the scheme used. Quadratic elements bring most of the reduction, except
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for lift which seems to converge at a slower rate and may benefit from an element
order beyond 3.
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Fig. 11 MTC 3: NACA0012,M = 0.50, α = 2◦, Re= 5,000. Convergence of force and heat flux
coefficients for P1, P2, and P3 elements; estimated numbers of degrees of freedom and times for
convergence.

Regarding CPU cost and memory requirements, we can be more specific for this
particular test case. For the same number of degrees of freedom, the extra cost of
P2 elements over P1 is only 30%; P3 elements are 2 to 2.5 times as expensive as
P1 elements. The overhead due to theL2 projection can be reduced. The CPU cost
increase is overtaken by the drastic reduction in the numberof nodes required for
convergence. Consequently the CPU time for convergence decreases with the degree
of the scheme. Memory requirements are mostly due to the implicit Jacobian matrix.
They respectively gain 30% and 70% for quadratic and cubic elements.

4.4 MTC 5: RAE2822,M = 0.734, α = 2.79◦, Re= 6,500,000

The final test case deals with a transonic high Reynolds number RANS problem.
In the numerical method described in Section 2.1, the turbulence equations are

solved in a staggered manner, with a second-order residual distribution scheme, and
are weakly coupled to the Navier-Stokes field through the turbulent viscosityµt .

As a first step, for higher-order calculations, RANS turbulent equations are
solved on an underlying P1 mesh, and thus remain second orderaccurate. These
first results show the robustness of the SUPG finite element method. As for the
more elementary MTC’s (1, 2, and 3), the convergence of quadratic and cubic el-
ements is similar to that obtained for linear elements with the same CFL settings.
High aspect ratios (up to 2×106 in the considered set of meshes) do not seem to be
an issue.

Figure 12 presents Mach number contours obtained with P1, P2, and P3 elements
on matching grids. On these fairly coarse meshes, it’s hard to see any difference
between the solutions.
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P1 (10,546 nodes) P2 (10,546 nodes)

P1 (23,634 nodes) P3 (23,634 nodes)

Fig. 12 MTC 5: RAE2822,M = 0.734,α = 2.79◦, Re= 6,500,000. Mach number contours on
matching P1 iso-P2 and P2 grids, and P1 iso-P3 and P3 grids.

The force coefficient convergence plots are gathered in Figure 13. The open sym-
bol curves represent the second-, third-, and fourth-ordermethods described above
(with a second order turbulence model). There is no real distinction between the
three schemes. They converge at the same rate toward the sameasymptotic values.
Nevertheless heat flux shows once more an indisputable advantage of higher-order
elements over linear ones. The error is smaller by as much as three orders of mag-
nitude. There is no additional benefit brought by cubic elements though.

In an attempt to simulate a “higher-order” turbulence model, we used the in-
terpolation of theµt field computed on the finest P1 mesh (2,669,536 nodes). The
outcome of this test is indicated in the different convergence plots of Fig. 13 with
filled symbols. We have only tested linear and quadratic elements. Results show that
the turbulence model has a huge impact on the convergence of force coefficients.
Quadratic elements have a slight edge over linear elements,especially for the coars-
est meshes. Heat flux convergence is unaffected. This demonstrate the need for a
higher-order turbulence model to fully exploit in RANS computations the benefit of
higher-order elements observed in inviscid and laminar test cases.
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Fig. 13 MTC 5: RAE2822,M = 0.734, α = 2.79◦, Re= 6,500,000. Convergence of force and
heat flux coefficients for P1, P2, and P3 elements.
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4.5 Concluding remarks on numerical test cases

In this study, many firsts have been accomplished:

• the implementation of higher-order (quadratic and cubic) stabilized finite ele-
ments for compressible flows in an industrial code;

• the systematic convergence study of increasingly difficulttest cases: inviscid,
transonic, laminar, and turbulent flows;

• the proof that higher-order convergence can be achieved at areasonable cost;
• the demonstration that higher-order elements are robust: same CFL rules where

applied in our simulations with convergences similar to linear elements and
sometimes significantly better;

• the verification that higher-order elements bring no particular complications in
terms of implicitation nor parallel efficiency.

Difficulties were encountered with the RANS test cases. We believe they can be
palliated with a stronger higher-order coupling between the Navier-Stokes solver
and the turbulence model, or the use of a genuine higher-order scheme for solving
the turbulence equations.

5 Towards industrial applications

As a conclusion we’ll comment on the transition towards industrial applications.
The extension to 3-D is readily available. To make it industrially viable, one needs
a dedicated way to generate higher-order meshes. EnrichingP1 meshes yields way
too fine higher-order mesh sets in 2-D. This is even more true in 3-D.

The cost of higher-order elements is reasonable (at most a factor of 2 for P3 with
the same number of dof’s), and it can be worked upon.

Higher-order elements can handle high aspect ratios and same CFL’s as the stan-
dard second-order scheme with convergences often better than with linear elements.
They engender no implicit, nor parallel issue, which is mandatory for industrial ap-
plications.

The coupling with RANS turbulence model must be improved. Inthe mean time,
higher-order elements might show a unique potential for Large Eddy Simulations.
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