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Abstract This chapter describes Dassault Aviation’s contribution to Workpackage 5
of the ADIGMA Project. The adjoint operator developed in theframework of op-
timum design is used to estimate the error in the solution with respect to a given
target quantity. Local values of this error estimation are used as a criterion to refine
the mesh. This yields significant improvement over traditional criteria based on the
residual or on gradients of physical quantities. The methodis carefully tested using
inviscid, transonic, laminar, and high Reynolds number turbulent flows.

1 Stabilized finite element schemes for the RANS equations

Dassault Aviation’s Navier-Stokes code, calledAETHER, uses a finite element ap-
proach, based on a symmetric form of the equations written interms of entropy
variables. The advantages of this change of variables are numerous: in addition to
the strong mathematical and numerical coherence they provide (dimensionally cor-
rect dot product, symmetric operators with positivity properties, efficient precondi-
tioning), entropy variables yield further improvements over the usual conservation
variables, in particular in the context of chemically reacting flows (see [1, 2]).

The code can handle the unstructured mixture of numerous types of elements (tri-
angles and quadrilaterals in 2-D; tetrahedra, bricks, and prisms in 3-D). In practice
mostly linear triangular and tetrahedron meshes are used.

The code has been successfully ported on many computer architectures. It is
fully vectorized and parallelized for shared or distributed memory machines using
the MPI message passing library (IBM SP2 Series, IBM BlueGene, Itanium II- and
Xeon-based Bull NovaScale) or native parallelization directives (NEC SX-4) (see
[3]).
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For details about the numerical method, the reader is referred to Chapter??. We
just recall the semi-discrete Galerkin/least-squares variational problem which can
be stated as:

FindV h ∈ S h (trial function space), such that for allW h ∈ V h (weighting
function space), the following equation holds:
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2 Adjoint-based indicators for stabilized finite element methods

In the following sections we describe how the adjoint operator developed in the
framework of optimum design can be used to estimate the errorin the solution with
respect to a given target quantity. Local values of this error estimation are used as
a criterion to refine the mesh. This yields significant improvement over traditional
criteria based on the residual or on gradients of physical quantities.

2.1 Adjoint-based extrapolation

We assume that we have a solution of the Navier-Stokes equationsV H solution of
(1): RH(V H) = 0 on a given mesh characterized by a mesh size parameterH, where
RH is the discrete residual associated with (1). We can computesome aerodynamic
function f of the solution (for instance drag or lift):f H(V H). Unfortunately, mesh
MH is too coarse to computef H accurately. A finer meshh whose characteristic
mesh size parameterh is smaller thanH would yield a better estimate off , viz.,
f h(V h). The question is “how can we estimatef h without explicitly computingV h,
which would require the solution ofRh(V h) = 0?” We will seek an estimate off h in
the form

f h(V h) ≈ f h(V h
H)+ · · ·

whereV h
H is the projection ofV H onto meshMh.

The first order Taylor expansion off h(V h) aboutV h
H reads:
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We can expandRh(V h) in the same fashion
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SinceV h is the solution of (1) onMh, we have

Rh(V h) = 0 (4)

Combining (2), (3), and (4), it results

f h(V h) ≈ f h(V h
H)−
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Following the ideas of Giles [5], we introduce the adjoint problem

[
∂Rh

∂V
(V h)

]T

Ψ h =

[
∂ f h

∂V
(V h)

]T

(6)

The adjoint ofRh with respect to the entropy variablesV h was obtained from the
original FORTRAN code by automatic differentiation using TAPENADE [4] in re-
verse mode.

Eq. (5) can be rewritten as

f h(V h) ≈ f h(V h
H)−Ψh ·Rh(V h

H)

In practice, we do not solve the adjoint problem on meshMh. Instead, we replaceΨh

with Ψh
H , the projection onto meshMh of Ψ H , solution of the adjoint problem (6) on

meshMH . This adjoint problem is solved with a preconditioned GMRESalgorithm.
Finally we can write the approximate off h(V h) as

f h(V h) ≈ f h(V h
H)−Ψh

H ·Rh(V h
H) (7)

which can be computed cheaply with the projected solution ofthe adjoint problem
on the coarse meshΨh

H and a mere residual evaluation on the fine mesh using the
projection of the coarse mesh solutionV h

H .
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2.2 Error estimation and refinement criterion

Similar ideas can be used to place error bounds on the estimated value of the aero-
dynamic functionf h(V h

H) with respect tof h(V h):

f h(V h)− f h(V h
H) ≈−Ψh

H ·Rh(V h
H)+ (Ψh

H −Ψh) ·Rh(V h
H) (8)

Let T h
H denote the correction term in (7):

T h
H = Ψh

H ·Rh(V h
H)

Then (8) becomes

f h(V h)− f h(V h
H) ≈−T h

H +(Ψh
H −Ψh) ·Rh(V h

H)

One can show that
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≤ 2

Finally
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H)−C

∣∣∣T h
H

∣∣∣ ≤ f h(V h) ≤ f h(V h
H)+C

∣∣∣T h
H

∣∣∣ (9)

If Mh is a very fine mesh on which asymptotic convergence is reached, (9) represents
the error bound onf h(V h

H) with respect to the exact solution of (1).
As we will see shortly,T h

H can also be used as a goal-oriented mesh adaptation
criterion, which reveals area in the mesh where locals errors have the biggest impact
on the value of the target functionf h. If we go back to equation (7), we can see that
if the “coarse mesh”MH (in fact the current mesh) produces a solutionV H which is
accurate enough to give a satisfactory value of the target aerodynamic functionf h,

f h(V h) ≈ f h(V h
H)

and
T h

H ≈ 0

The idea consists in refining the mesh where local values of|T h
H | are greater than

some specified limitε. The refinement algorithm goes as follows:
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1. on meshMH , solve (1) forV H and compute the solution of the adjoint problem
ΨH with respect to some target functionf H ;

2. generate a finer finer meshMh, typically obtained by a uniform (iso-P2) refine-
ment ofMH ;

3. projectV H andΨH ontoMh and evaluateRh(V h
H). Remark: (1) is not solved on

Mh;
4. compute a local mesh adaptation parameterPh

i at each node of meshMh

Ph
i = (Ψh

H)i ·R
h
i (V

h
H)

where the dot product is extended to the sole number of degrees of freedom at
nodei;

5. projectPh onto meshMH ;
6. if (PH

h )i < ε, refine the mesh locally and go back to step 1; otherwise the mesh is
fine enough andf H(V H) is computed with an adequate accuracy.

3 Numerical examples of goal-oriented refinement for 2-D flows

Dassault Aviation computed the same four Mandatory Test Cases defined in Work-
package 2 of the ADIGMA Project and already presented in Chapter??. They cover
a wide range of applications: from inviscid subsonic and transonic flows (MTC’s 1
and 2), to laminar Navier-Stokes (MTC 3), and finally a profilein transonic turbulent
conditions (MTC 5). For each test case we compare the baseline results obtained us-
ing Dassault Aviation’s industrial Navier-Stokes codeAETHER on a set of uniformly
refined meshes with successive goal-oriented adaptation based on the same initial
coarse grid.

Local isotropic mesh enrichment is used: triangles tagged for adaptation are split
into four. Nodes added on the boundary are placed on the actual surface; if needed
mesh deformation techniques are used to make all elements positive. On the border
of a locally refined zone, hanging nodes are connected to the opposite vertex. In
order to control the aspect ratios in the adapted meshes, we allow only subdivision
of original triangles into four or two. A triangle with hanging nodes on two faces
will be split into four, propagating a new hanging node further away. Memory of
triangles split into two is kept to avoid later division. This technique ensures the
quality of the adapted grids.

3.1 MTC 1: NACA0012,M = 0.50, α = 2◦, inviscid

For this inviscid subsonic test case, the drag coefficientCD was used as the target
quantity. The initial unadapted mesh around the NACA0012 airfoil contains 1106



6 Frédéric Chalot

nodes. Figure 1 presents the original mesh and five successive levels of goal-oriented
adaptive refinement together with the matching Mach-numbercontours.

Kinks in Mach number contours disappear after only two levels of adaptation
although refinement mostly occurs in the stagnation, suction, and trailing edge re-
gions. This is an indication that the entropy layer observedin coarse grid solutions
is not due to lower order boundary conditions. Instead spurious entropy is generated
at the leading edge and is convected along the profile.
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Fig. 1 MTC 1: NACA0012,M = 0.50,α = 2◦, inviscid. Original 1106-node mesh and five succes-
sive levels of goal-oriented refinement based on drag with corresponding Mach number contours
on the right.

Figure 2 shows the convergence of force coefficients obtained with goal-oriented
mesh adaptation (mixed line) compared with those computed with global mesh re-
finement (solid line).
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Fig. 2 MTC 1: NACA0012,M = 0.50, α = 2◦, inviscid. Convergence of force coefficients com-
pared with global mesh refinement.
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It is striking to see thatCD, which is the target, converges better thanCL as the
sizes of adapted meshes increase. The gain in the required number of degrees of
freedom for convergence is roughly a factor of 5. CPU gain is of the same order,
with an additional advantage for adapted meshes: they have fewer points in the
freestream, thus they require fewer time steps to reach convergence at a given CFL
number.

It must be noted that the threshold for refinement was fixed at 50% of the mean
criterion value. This yields a series of adapted meshes which nearly double in size
at each level of adaptation. This figure can certainly be reduced with a stricter re-
finement criterion limit.

3.2 MTC 2: NACA0012,M = 0.80, α = 1.25◦, inviscid

The pressure drag coefficientCD was also used as the target quantity to produce the
adapted meshes for the transonic case MTC 2 shown in Figure 3.Mach number con-
tours corresponding to the initial grid and to the six subsequent levels of adaptation
are displayed on the right. The initial mesh is the same as theone for MTC 1.

In the beginning, refinement occurs more or less uniformly inthe dependency
region. Only when the overall mesh size reaches a reasonablelevel, the criterion
hits more selectively at the shocks. Both leeward and windward side shocks are
accurately captured which would have been particularly challenging for a gradient-
based adaptation. As in the subsonic case, points are added at the surface of the
airfoil, in particular in the acceleration/expansion regions. The slip line at the trailing
edge is also detected in the final meshes.
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Fig. 3 MTC 2: NACA0012, M = 0.80, α = 1.25◦, inviscid. Original 1106-node mesh and six
successive levels of goal-oriented refinement based on dragwith corresponding Mach number
contours on the right.

Figure 4 presents the convergence of force coefficients. Thesame criterion
threshold as MTC 1 was used. Again it produces a series of adapted meshes which
grow too fast in terms of degrees of freedom. Nonetheless therequired number of
nodes to converge the drag coefficient is reduced by a factor of 2.3. The behavior of
lift coefficient is very disappointing. Even on the finest adapted grid (54,220 nodes),
it does not meet the convergence criterion. Goal-oriented mesh refinement based on
CL should be tested.
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Fig. 4 MTC 2: NACA0012, M = 0.80, α = 1.25◦, inviscid. Convergence of force coefficients
compared with global mesh refinement.
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3.3 MTC 3: NACA0012,M = 0.50, α = 2◦, Re = 5,000

Even though MTC 3 is a viscous test case, we have again used thepressure drag
coefficientCD as the target for goal-oriented mesh adaptation with the same criterion
threshold chosen previously.

Figure 5 shows the original 1533-node mesh and four successive levels of goal-
oriented refinement based on pressure drag together with thecorresponding pressure
contours on the right. Refinement occurs at the leading edge,along the profile, and
in the wake. Mesh deformation was used at each level of adaptation to place the new
nodes along the actual profile.

Only four levels of refinement could be applied. A fifth adapted mesh was gener-
ated, on which the computation revealed unsteady. This behavior was observed by
other partners in the ADIGMA Project, although all our previous computations for
this Re = 5,000 test cases always converged to a steady state.
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Fig. 5 MTC 3: NACA0012,M = 0.50, α = 2◦, Re = 5,000. Original 1533-node mesh and four
successive levels of goal-oriented refinement based on pressure drag with corresponding pressure
contours on the right.

Figure 6 displays the convergence plots of the force and heatflux coefficients.
Once more the criterion threshold seems too lenient. The mesh size increases too
rapidly at each refinement step (by a factor of nearly 3). The required number of
degrees of freedom to converge pressure drag is barely reduced by 10%.
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Fig. 6 MTC 3: NACA0012,M = 0.50, α = 2◦, Re = 5,000. Convergence of force and heat flux
coefficients compared with global mesh refinement.

Although not targeted, lift convergence requirements dropby about 40%, those
of friction drag by about 20%. The convergence curves of friction drag and of heat
flux tend to flatten out with the finest adapted meshes. This might be an indication
of the forthcoming onset of unsteadiness.

3.4 MTC 5: RAE2822,M = 0.734, α = 2.79◦, Re = 6,500,000

The final test case is a transonic high Reynolds number RANS calculation past an
RAE2822 profile. We have still used the pressure drag coefficientCD as the target
for goal-oriented mesh adaptation. We have altered the criterion threshold from the
previous MTC’s though. It appeared that too heavy a refinement was applied at each
level, which somehow reduced the potential benefit of mesh adaptation. For MTC 5
we have tried to limit the refinement to the top 20% of the elements where the
criterion was the largest.

In doing so problems were encountered when refining under-resolved highly-
curved boundaries near the leading edge. Too little local refinement would prevent
mesh deformation from completing successfully: the locally refined region must be
thick enough to allow the deformation of the thinnest elements into the volume. The
refinement zone had to be extended respectively to the top 40 and 60% to permit
deformation of the first two adapted meshes. For the next two refined grids, no cri-
terion threshold value would yield no negative elements after deformation. We chose
to stick to our 20% rule and to skip mesh deformation all together. The final adapted
mesh was obtained with the top 20% criterion and with a successful mesh deforma-
tion. The five adapted meshes are presented in Figure 7 with the initial 2668-node
mesh; Mach number contours are shown on the right next to eachcorresponding
grid.
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Fig. 7 MTC 5: RAE2822,M = 0.734,α = 2.79◦, Re = 6,500,000. Original 2668-node mesh and
five successive levels of goal-oriented refinement based on pressure drag with corresponding Mach
number contours on the right.

At first goal-oriented adaptation driven by pressure drag refined the leading edge,
the suction region and the wake. Then it hit more specificallyat the shock area.
Although intrinsically inviscid the chosen target seems tohave tackled this high-
Reynolds number case rather well. Let’s have a look at the convergence of force and
heat flux coefficients presented in Figure 8 for a more quantitative analysis.

The number of degrees of freedom to converge pressure drag isreduced by a fac-
tor of 13 from 130,000 to about 10,000. This exemplifies the power of goal-oriented
mesh adaptation when used with a controlled refinement criterion level. The re-
quirement for lift is divided by a factor of nearly 3 (from 60,000 to about 23,000).
Viscous coefficients are less successful. Friction drag converges only slightly faster
than with a uniform grid refinement. Heat flux seems to reach anasymptotic value
of 10−4 and not converge any further. Again it would be worth testingmore Navier-
Stokes specific target functions, such as friction drag, total drag, or heat flux.

In spite of the aforementioned mesh deformation difficulties, goal-oriented mesh
adaptation, even based on a pressure target, can handle highReynolds numbers.
Feature based adaptation would probably miss some of the features of the flow.
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Fig. 8 MTC 5: RAE2822,M = 0.734,α = 2.79◦, Re = 6,500,000. Convergence of force and heat
flux coefficients compared with global mesh refinement.

4 Conclusion

Substantiated by various test cases, we have showed that goal-oriented adaptation
coupled with local isotropic mesh refinement, works for diverse situations: inviscid,
transonic, laminar, and high Reynolds number turbulent flows.

Adaptation based on local isotropic refinement requires a decent mesh to start
with, that is for instance stretched elements along the wallfor Navier-Stokes calcu-
lations. On that condition, it can handle high aspect ratios. One must pay attention
though to underresolved curved boundary layer regions where mesh deformation to
match the surface definition can be an issue.

In order to maximize the gain over uniform grid refinement, the criterion thresh-
old needs to be tuned. Too much refinement at each adaptation level will slow down
the whole process. Nevertheless there is always a slight CPUadvantage for adapted
meshes with an equivalent number of nodes: they have less points in the freestream
and thus require fewer time steps to converge at a given CFL number.

The different force coefficients converge at different rates. This is even more true
with goal-oriented adaptation. Only the targeted quantitytends to see the benefit of
the refinement; the adjoint does not seem to improve the solution globally. Other
cost functions should be tested, especially specific Navier-Stokes ones. Multiple
targeted adaptation might be the solution. In any case, goaloriented adaptation is
still more versatile than feature or residual based refinement: it works for shocks,
boundary layers, and wakes, even with a simple pressure costfunction.

Local isotropic refinement not viable in 3-D; the number of nodes grows too
fast. Anisotropic refinement/derefinement or a remeshing capability are needed for
complex 3-D applications. For industrial use, an automatedprocedure is needed.
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Running several meshes for convergence is a turn down for thetechnique. Human
cost must not overwhelm the CPU advantage.

The method should possibly be coupled with higher-order elements for aug-
mented performance. In principle the adjoint obtained through automatic differenti-
ation should work as is with higher order elements.
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