Goal-oriented Mesh Adaptation in an Industrial
Stabilized Finite Element Navier-Stokes Code

Frédéric Chalot

Abstract This chapter describes Dassault Aviation’s contributmWborkpackage 5
of the ADIGMA Project. The adjoint operator developed in fremework of op-
timum design is used to estimate the error in the solutioh wéspect to a given
target quantity. Local values of this error estimation asedias a criterion to refine
the mesh. This yields significant improvement over tradgiccriteria based on the
residual or on gradients of physical quantities. The methadrefully tested using
inviscid, transonic, laminar, and high Reynolds numbéduuient flows.

1 Stabilized finite element schemes for the RANS equations

Dassault Aviation’s Navier-Stokes code, call®ETHER, uses a finite element ap-
proach, based on a symmetric form of the equations writteterims of entropy
variables. The advantages of this change of variables areeraus: in addition to
the strong mathematical and numerical coherence theygeddimensionally cor-
rect dot product, symmetric operators with positivity pedges, efficient precondi-
tioning), entropy variables yield further improvement&pthe usual conservation
variables, in particular in the context of chemically réagflows (see [1, 2]).

The code can handle the unstructured mixture of numeroestypelements (tri-
angles and quadrilaterals in 2-D; tetrahedra, bricks, aistng in 3-D). In practice
mostly linear triangular and tetrahedron meshes are used.

The code has been successfully ported on many computetearichies. It is
fully vectorized and parallelized for shared or distrititaemory machines using
the MPI message passing library (IBM SP2 Series, IBM BlueG&anium Il1- and
Xeon-based Bull NovaScale) or native parallelization cives (NEC SX-4) (see
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For details about the numerical method, the reader is exléa Chapte?P?. We
just recall the semi-discrete Galerkin/least-squaremtianal problem which can
be stated as:

Find V" e .#" (trial function space), such that for 3" € ¥ (weighting
function space), the following equation holds:
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2 Adjoint-based indicators for stabilized finite element méhods

In the following sections we describe how the adjoint opmrateveloped in the
framework of optimum design can be used to estimate the irtbe solution with
respect to a given target quantity. Local values of thisreggtimation are used as
a criterion to refine the mesh. This yields significant imgoent over traditional
criteria based on the residual or on gradients of physicahtties.

2.1 Adjoint-based extrapolation

We assume that we have a solution of the Navier-Stokes emsatl! solution of
(1): R* (VM) =0 on a given mesh characterized by a mesh size paramgetenere
R is the discrete residual associated with (1). We can congatee aerodynamic
function f of the solution (for instance drag or liftfH (V). Unfortunately, mesh
MH is too coarse to computE? accurately. A finer mesh whose characteristic
mesh size parametéris smaller tharH would yield a better estimate df, viz.,
f1(VM). The question is “how can we estimaitéwithout explicitly computing/",
which would require the solution &"(V") = 0?” We will seek an estimate df' in
the form
V) & V) +

whereV{!! is the projection o' onto meshv.
The first order Taylor expansion 6f'(V") aboutV,] reads:



Goal-oriented Mesh Adaptation in an Industrial Stabiligédite Element NS Code 3

(VP -V +0 (V"= Vh?) 2)

Vh
We can expan&®"(V") in the same fashion

IRP

hn/hy _ phpshy , 9%
RV = RV + S0

(VP +0 (VM- vh?) 3)

i
SinceV" is the solution of (1) oM", we have
R(WM =0 (4)

Combining (2), (3), and (4), it results

IR
vh
v oV

ofh

hn/hy — ghna/h
) ~ 1) - 2o

R(V) (5)

h
VH

Following the ideas of Giles [5], we introduce the adjoiriplem
orR 1T qafh 1T
[W(V )} ¥h= [W(V )] (6)

The adjoint ofR" with respect to the entropy variablg$ was obtained from the
original FORTRAN code by automatic differentiation usir§PENADE [4] in re-
verse mode.

Eq. (5) can be rewritten as

V) ~ ) - W R ()

In practice, we do not solve the adjoint problem on me$hinstead, we replace”

with Y, the projection onto medt" of WH, solution of the adjoint problem (6) on

meshM" . This adjoint problem is solved with a preconditioned GMREgorithm.
Finally we can write the approximate 6f(V") as

V") & 1) — - ROD) (7)

which can be computed cheaply with the projected solutiathefadjoint problem
on the coarse mesH] and a mere residual evaluation on the fine mesh using the
projection of the coarse mesh solutMﬁ\.
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2.2 Error estimation and refinement criterion

Similar ideas can be used to place error bounds on the estinatue of the aero-
dynamic functionf" (V) with respect tof "(V):

V) — 1) & RV + (- @) R ®)
Let T,_ﬁ‘ denote the correction term in (7):
Th = R
Then (8) becomes
V) — V) & =T+ (W - 97 RV
One can show that
’(w,j‘ —yhy. Rh(vg)‘ .0, ash—0

< |[wh-RMY)

Consequently,
|1V — | < Th|
with
C—0 ash—0
<2
Finally
(Vi) —C[Th| < fhvh) < 1) + | )

If MM is a very fine mesh on which asymptotic convergence is rea¢®e@presents
the error bound ori"(V}}) with respect to the exact solution of (1).

As we will see shortly,‘l’,f,‘ can also be used as a goal-oriented mesh adaptation
criterion, which reveals area in the mesh where locals grave the biggestimpact
on the value of the target functid. If we go back to equation (7), we can see that
if the “coarse meshM" (in fact the current mesh) produces a soluNBhwhich is
accurate enough to give a satisfactory value of the targetigaamic functiorf",

V) ~ (V)

and
TW~0

The idea consists in refining the mesh where local valug3Hfare greater than
some specified limig. The refinement algorithm goes as follows:



Goal-oriented Mesh Adaptation in an Industrial Stabiligédite Element NS Code 5

1. on meshv™, solve (1) forvH and compute the solution of the adjoint problem
WH with respect to some target functid';

2. generate a finer finer meSi", typically obtained by a uniform (iso-P2) refine-
ment ofM";

3. prk(])ject\/H and®H ontoMM" and evaluat®"(V{}). Remark: (1) is not solved on
M7

4. compute a local mesh adaptation parame*feat each node of megi"

P = (i - RV

where the dot product is extended to the sole number of degfelreedom at
nodei;

5. projectP” onto meshiviM;

6. if (P,'j)i < ¢, refine the mesh locally and go back to step 1; otherwise thehiise
fine enough and" (V) is computed with an adequate accuracy.

3 Numerical examples of goal-oriented refinement for 2-D flow

Dassault Aviation computed the same four Mandatory Tese€dsfined in Work-
package 2 of the ADIGMA Project and already presented in @n&p3. They cover
a wide range of applications: from inviscid subsonic andgomic flows (MTC’s 1
and 2), to laminar Navier-Stokes (MTC 3), and finally a prafileansonic turbulent
conditions (MTC 5). For each test case we compare the bagelsults obtained us-
ing Dassault Aviation’s industrial Navier-Stokes cadeT HER on a set of uniformly
refined meshes with successive goal-oriented adaptatieedban the same initial
coarse grid.

Local isotropic mesh enrichment is used: triangles taggeddaptation are split
into four. Nodes added on the boundary are placed on thelattrface; if needed
mesh deformation techniques are used to make all elemesits/poOn the border
of a locally refined zone, hanging nodes are connected to gpesite vertex. In
order to control the aspect ratios in the adapted meshed|ave@nly subdivision
of original triangles into four or two. A triangle with hamgj nodes on two faces
will be split into four, propagating a new hanging node fertaway. Memory of
triangles split into two is kept to avoid later division. Shiechnique ensures the
quality of the adapted grids.

3.1 MTC 1: NACAO012M = 0.50, a = 2°, inviscid

For this inviscid subsonic test case, the drag coeffid@pntvas used as the target
quantity. The initial unadapted mesh around the NACAOOtfiicontains 1106
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nodes. Figure 1 presents the original mesh and five sucedssels of goal-oriented
adaptive refinement together with the matching Mach-nurobetours.

Kinks in Mach number contours disappear after only two el adaptation
although refinement mostly occurs in the stagnation, sactad trailing edge re-
gions. This is an indication that the entropy layer obseimezbarse grid solutions
is not due to lower order boundary conditions. Instead spusrentropy is generated
at the leading edge and is convected along the profile.
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AVAVANAS.
Fig. 1 MTC 1: NACA0012,M = 0.50, a = 2°, inviscid. Original 1106-node mesh and five succes-
sive levels of goal-oriented refinement based on drag witresponding Mach number contours
on the right.
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Figure 2 shows the convergence of force coefficients obdaiith goal-oriented
mesh adaptation (mixed line) compared with those computtdglobal mesh re-
finement (solid line).
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Fig. 2 MTC 1: NACA0012,M = 0.50, a = 2°, inviscid. Convergence of force coefficients com-
pared with global mesh refinement.
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It is striking to see tha€p, which is the target, converges better titanas the
sizes of adapted meshes increase. The gain in the requiredemwof degrees of
freedom for convergence is roughly a factor of 5. CPU gainfithe same order,
with an additional advantage for adapted meshes: they rewerfpoints in the
freestream, thus they require fewer time steps to reachecgauce at a given CFL
number.

It must be noted that the threshold for refinement was fixed 6f the mean
criterion value. This yields a series of adapted mesheshwinéarly double in size
at each level of adaptation. This figure can certainly be cedwvith a stricter re-
finement criterion limit.

3.2 MTC 2: NACA0012M = 0.80, a = 1.25°, inviscid

The pressure drag coefficiebt was also used as the target quantity to produce the
adapted meshes for the transonic case MTC 2 shown in Figidach number con-
tours corresponding to the initial grid and to the six sulseq levels of adaptation
are displayed on the right. The initial mesh is the same asriedor MTC 1.

In the beginning, refinement occurs more or less uniformlthz dependency
region. Only when the overall mesh size reaches a reasotefgle the criterion
hits more selectively at the shocks. Both leeward and wimdveade shocks are
accurately captured which would have been particularlyiehging for a gradient-
based adaptation. As in the subsonic case, points are addlee surface of the
airfoil, in particular in the acceleration/expansion metg. The slip line at the trailing
edge is also detected in the final meshes.
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Fig. 3 MTC 2: NACA0012,M = 0.80, a = 1.25°, inviscid. Original 1106-node mesh and six
successive levels of goal-oriented refinement based on wlithgcorresponding Mach number
contours on the right.

Figure 4 presents the convergence of force coefficients. SEmee criterion
threshold as MTC 1 was used. Again it produces a series otedlapeshes which
grow too fast in terms of degrees of freedom. Nonethelesseifpgired number of
nodes to converge the drag coefficient is reduced by a fatfBoThe behavior of
lift coefficient is very disappointing. Even on the finest pdal grid (54,220 nodes),
it does not meet the convergence criterion. Goal-orientesimefinement based on
C_ should be tested.
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Fig. 4 MTC 2: NACA0012,M = 0.80, a = 1.25°, inviscid. Convergence of force coefficients
compared with global mesh refinement.
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3.3 MTC 3: NACA0012M = 0.50, o = 2°, Re= 5,000

Even though MTC 3 is a viscous test case, we have again usqudlsure drag
coefficientCp as the target for goal-oriented mesh adaptation with thesaiterion
threshold chosen previously.

Figure 5 shows the original 1533-node mesh and four suseeksiels of goal-
oriented refinement based on pressure drag together wittothesponding pressure
contours on the right. Refinement occurs at the leading eddgeg the profile, and
in the wake. Mesh deformation was used at each level of atil@pta place the new
nodes along the actual profile.

Only four levels of refinement could be applied. A fifth adajteesh was gener-
ated, on which the computation revealed unsteady. Thisvi@haas observed by
other partners in the ADIGMA Project, although all our paw computations for
thisRe = 5,000 test cases always converged to a steady state.
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Fig. 5 MTC 3: NACA0012,M = 0.50, a = 2°, Re = 5,000. Original 1533-node mesh and four
successive levels of goal-oriented refinement based osyeesrag with corresponding pressure
contours on the right.

Figure 6 displays the convergence plots of the force and fheatoefficients.
Once more the criterion threshold seems too lenient. Thénreige increases too
rapidly at each refinement step (by a factor of nearly 3). Ewuired number of
degrees of freedom to converge pressure drag is barelyeddiycl10%.

0.0265 ——TTTTT—— T T “\ \ I I
[ L\ —5— linear ] 0.052 —5— linear _
[ —&— goal refinement ] n —&— goal refinement
= conv def = conv def
0.026 - L \ \
r \\ 1 0.048
0.0255 K ]
o ] . |
o | ] (SIS §
- g 0.044
0.025 - 3- \-- fl 1+ -
[+ - \ - - - -1 0.04}- |
0.0245 = i \ ]
[ \ ] + P
L . N - y— TITIT 1 L IR N N T - Ll
0024 10" 10° 0034 10" 10°

10 10
# of dof per equation # of dof per equation




Goal-oriented Mesh Adaptation in an Industrial Stabiligédite Element NS Code 13

0.0332 T TTTTTT 0.0005 T T

0.033F i
I o
L “ ] +
0.0328 3 //
. [ ] [
0(3326 5 1 -0.0005 A
r N /34 ] g [ ]
0.0324 ] . 3 1
N \\ = i -0.001 /ﬂ
u 1 [ —e— 1
00322 \_ ] T 1] [ A 2 goaretinement | ]
. // i 00015 = convlevel 1]
0.032|- o . I / / ]
L L L ] . L /o L L 1
0.0314 0.003

0 10° 10°

10" 10 10" 10
# of dof per equation # of dof per equation

Fig. 6 MTC 3: NACA0012,M = 0.50, a = 2°, Re= 5,000. Convergence of force and heat flux
coefficients compared with global mesh refinement.

Although not targeted, lift convergence requirements drpabout 40%, those
of friction drag by about 20%. The convergence curves ofifnicdrag and of heat
flux tend to flatten out with the finest adapted meshes. Thiintig an indication
of the forthcoming onset of unsteadiness.

3.4 MTC 5: RAE2822M =0.734 a = 2.79°, Re = 6,500,000

The final test case is a transonic high Reynolds number RANSIlesion past an

RAE2822 profile. We have still used the pressure drag coeffi€lp as the target
for goal-oriented mesh adaptation. We have altered therimnt threshold from the
previous MTC's though. It appeared that too heavy a refinémas applied at each
level, which somehow reduced the potential benefit of meaptation. For MTC 5

we have tried to limit the refinement to the top 20% of the eletmaevhere the

criterion was the largest.

In doing so problems were encountered when refining undetved highly-
curved boundaries near the leading edge. Too little lodadement would prevent
mesh deformation from completing successfully: the Igcadfined region must be
thick enough to allow the deformation of the thinnest eleta@rto the volume. The
refinement zone had to be extended respectively to the tomd®@%6 to permit
deformation of the first two adapted meshes. For the next éfined grids, no cri-
terion threshold value would yield no negative elementraféformation. We chose
to stick to our 20% rule and to skip mesh deformation all tbgetThe final adapted
mesh was obtained with the top 20% criterion and with a sfabsiesh deforma-
tion. The five adapted meshes are presented in Figure 7 véthitial 2668-node
mesh; Mach number contours are shown on the right next to earthsponding
grid.
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Fig. 7 MTC 5: RAE2822M = 0.734,a = 2.79, Re= 6,500,000. Original 2668-node mesh and
five successive levels of goal-oriented refinement basedesspre drag with corresponding Mach
number contours on the right.

At first goal-oriented adaptation driven by pressure dréiged the leading edge,
the suction region and the wake. Then it hit more specificailyhe shock area.
Although intrinsically inviscid the chosen target seem$itwe tackled this high-
Reynolds number case rather well. Let's have a look at theergence of force and
heat flux coefficients presented in Figure 8 for a more quativié analysis.

The number of degrees of freedom to converge pressure dredpsed by a fac-
tor of 13 from 130000 to about 1M00. This exemplifies the power of goal-oriented
mesh adaptation when used with a controlled refinementricnitdevel. The re-
quirement for lift is divided by a factor of nearly 3 (from &0 to about 23000).
Viscous coefficients are less successful. Friction drageaes only slightly faster
than with a uniform grid refinement. Heat flux seems to reacasymptotic value
of 10~* and not converge any further. Again it would be worth testimye Navier-
Stokes specific target functions, such as friction drag) tifag, or heat flux.

In spite of the aforementioned mesh deformation difficaltgoal-oriented mesh
adaptation, even based on a pressure target, can handl&bjgtolds numbers.
Feature based adaptation would probably miss some of theéseaof the flow.
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Fig. 8 MTC 5: RAE2822M = 0.734,a = 2.79°, Re= 6,500,000. Convergence of force and heat
flux coefficients compared with global mesh refinement.

4 Conclusion

Substantiated by various test cases, we have showed thabmigraed adaptation
coupled with local isotropic mesh refinement, works for deeesituations: inviscid,
transonic, laminar, and high Reynolds number turbulentdlow

Adaptation based on local isotropic refinement requirescemtemesh to start
with, that is for instance stretched elements along the fealNavier-Stokes calcu-
lations. On that condition, it can handle high aspect ratrse must pay attention
though to underresolved curved boundary layer regionsevimesh deformation to
match the surface definition can be an issue.

In order to maximize the gain over uniform grid refinemeng, thiterion thresh-
old needs to be tuned. Too much refinement at each adaptewieirwill slow down
the whole process. Nevertheless there is always a slight&Rbintage for adapted
meshes with an equivalent number of nodes: they have leasspnithe freestream
and thus require fewer time steps to converge at a given CRibeu

The different force coefficients converge at differentsaféhis is even more true
with goal-oriented adaptation. Only the targeted quanitys to see the benefit of
the refinement; the adjoint does not seem to improve theisolgilobally. Other
cost functions should be tested, especially specific N&viekes ones. Multiple
targeted adaptation might be the solution. In any case, goaited adaptation is
still more versatile than feature or residual based refimtnieworks for shocks,
boundary layers, and wakes, even with a simple pressurdurtdton.

Local isotropic refinement not viable in 3-D; the number ofles grows too
fast. Anisotropic refinement/derefinement or a remeshipglaidity are needed for
complex 3-D applications. For industrial use, an automai@tedure is needed.
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Running several meshes for convergence is a turn down faetimique. Human
cost must not overwhelm the CPU advantage.

The method should possibly be coupled with higher-ordemelgs for aug-
mented performance. In principle the adjoint obtainedugtoautomatic differenti-
ation should work as is with higher order elements.
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